61 research outputs found

    Characterizing multisegment foot kinematics during gait in diabetic foot patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The prevalence of diabetes mellitus has reached epidemic proportions, this condition may result in multiple and chronic invalidating long term complications. Among these, the diabetic foot, is determined by the simultaneous presence of both peripheral neuropathy and vasculopathy that alter the biomechanics of the foot with the formation of callosity and ulcerations. To diagnose and treat the diabetic foot is crucial to understand the foot complex kinematics. Most of gait analysis protocols represent the entire foot as a rigid body connected to the shank. Nevertheless the existing multisegment models cannot completely decipher the impairments associated with the diabetic foot.</p> <p>Methods</p> <p>A four segment foot and ankle model for assessing the kinematics of the diabetic foot was developed. Ten normal subjects and 10 diabetics gait patterns were collected and major sources of variability were tested. Repeatability analysis was performed both on a normal and on a diabetic subject. Direct skin marker placement was chosen in correspondence of 13 anatomical landmarks and an optoelectronic system was used to collect the data.</p> <p>Results</p> <p>Joint rotation normative bands (mean plus/minus one standard deviation) were generated using the data of the control group. Three representative strides per subject were selected. The repeatability analysis on normal and pathological subjects results have been compared with literature and found comparable. Normal and pathological gait have been compared and showed major statistically significant differences in the forefoot and midfoot dorsi-plantarflexion.</p> <p>Conclusion</p> <p>Even though various biomechanical models have been developed so far to study the properties and behaviour of the foot, the present study focuses on developing a methodology for the functional assessment of the foot-ankle complex and for the definition of a functional model of the diabetic neuropathic foot. It is, of course, important to evaluate the major sources of variation (true variation in the subject's gait and artefacts from the measurement procedure). The repeatability of the protocol was therefore examined, and results showed the suitability of this method both on normal and pathological subjects. Comparison between normal and pathological kinematics analysis confirmed the validity of a similar approach in order to assess neuropathics biomechanics impairment.</p

    Genetic determinants in a critical domain of ns5a correlate with hepatocellular carcinoma in cirrhotic patients infected with hcv genotype 1b

    Get PDF
    HCV is an important cause of hepatocellular carcinoma (HCC). HCV NS5A domain‐1 interacts with cellular proteins inducing pro‐oncogenic pathways. Thus, we explore genetic variations in NS5A domain‐1 and their association with HCC, by analyzing 188 NS5A sequences from HCV genotype‐1b infected DAA‐naĂŻve cirrhotic patients: 34 with HCC and 154 without HCC. Specific NS5A mutations significantly correlate with HCC: S3T (8.8% vs. 1.3%, p = 0.01), T122M (8.8% vs. 0.0%, p &lt; 0.001), M133I (20.6% vs. 3.9%, p &lt; 0.001), and Q181E (11.8% vs. 0.6%, p &lt; 0.001). By multivariable analysis, the presence of &gt;1 of them independently correlates with HCC (OR (95%CI): 21.8 (5.7–82.3); p &lt; 0.001). Focusing on HCC‐group, the presence of these mutations correlates with higher viremia (median (IQR): 5.7 (5.4–6.2) log IU/mL vs. 5.3 (4.4–5.6) log IU/mL, p = 0.02) and lower ALT (35 (30–71) vs. 83 (48–108) U/L, p = 0.004), suggesting a role in enhancing viral fitness without affecting necroinflammation. Notably, these mutations reside in NS5A regions known to interact with cellular proteins crucial for cell‐cycle regulation (p53, p85‐PIK3, and ÎČ‐ catenin), and introduce additional phosphorylation sites, a phenomenon known to ameliorate NS5A interaction with cellular proteins. Overall, these results provide a focus for further investigations on molecular bases of HCV‐mediated oncogenesis. The role of these NS5A domain‐1 mutations in triggering pro‐oncogenic stimuli that can persist also despite achievement of sustained virological response deserves further investigation

    The rapid spread of SARS-COV-2 Omicron variant in Italy reflected early through wastewater surveillance

    Get PDF
    The SARS-CoV-2 Omicron variant emerged in South Africa in November 2021, and has later been identified worldwide, raising serious concerns. A real-time RT-PCR assay was designed for the rapid screening of the Omicron variant, targeting characteristic mutations of the spike gene. The assay was used to test 737 sewage samples collected throughout Italy (19/21 Regions) between 11 November and 25 December 2021, with the aim of assessing the spread of the Omicron variant in the country. Positive samples were also tested with a real-time RT-PCR developed by the European Commission, Joint Research Centre (JRC), and through nested RT-PCR followed by Sanger sequencing. Overall, 115 samples tested positive for Omicron SARS-CoV-2 variant. The first occurrence was detected on 7 December, in Veneto, North Italy. Later on, the variant spread extremely fast in three weeks, with prevalence of positive wastewater samples rising from 1.0% (1/104 samples) in the week 5-11 December, to 17.5% (25/143 samples) in the week 12-18, to 65.9% (89/135 samples) in the week 19-25, in line with the increase in cases of infection with the Omicron variant observed during December in Italy. Similarly, the number of Regions/Autonomous Provinces in which the variant was detected increased from one in the first week, to 11 in the second, and to 17 in the last one. The presence of the Omicron variant was confirmed by the JRC real-time RT-PCR in 79.1% (91/115) of the positive samples, and by Sanger sequencing in 66% (64/97) of PCR amplicons. In conclusion, we designed an RT-qPCR assay capable to detect the Omicron variant, which can be successfully used for the purpose of wastewater-based epidemiology. We also described the history of the introduction and diffusion of the Omicron variant in the Italian population and territory, confirming the effectiveness of sewage monitoring as a powerful surveillance tool

    Understanding Factors Associated With Psychomotor Subtypes of Delirium in Older Inpatients With Dementia

    Get PDF

    A New Classification of Diabetic Gait Pattern Based on Cluster Analysis of Biomechanical Data

    No full text
    Background The diabetic foot, one of the most serious complications of diabetes mellitus and a major risk factor for plantar ulceration, is determined mainly by peripheral neuropathy. Neuropathic patients exhibit decreased stability while standing as well as during dynamic conditions. A new methodology for diabetic gait pattern classification based on cluster analysis has been proposed that aims to identify groups of subjects with similar patterns of gait and verify if three-dimensional gait data are able to distinguish diabetic gait patterns from one of the control subjects. Method The gait of 20 nondiabetic individuals and 46 diabetes patients with and without peripheral neuropathy was analyzed [mean age 59.0 (2.9) and 61.1(4.4) years, mean body mass index (BMI) 24.0 (2.8), and 26.3 (2.0)]. K-means cluster analysis was applied to classify the subjects' gait patterns through the analysis of their ground reaction forces, joints and segments (trunk, hip, knee, ankle) angles, and moments. Results Cluster analysis classification led to definition of four well-separated clusters: one aggregating just neuropathic subjects, one aggregating both neuropathics and non-neuropathics, one including only diabetes patients, and one including either controls or diabetic and neuropathic subjects. Conclusions Cluster analysis was useful in grouping subjects with similar gait patterns and provided evidence that there were subgroups that might otherwise not be observed if a group ensemble was presented for any specific variable. In particular, we observed the presence of neuropathic subjects with a gait similar to the controls and diabetes patients with a long disease duration with a gait as altered as the neuropathic one
    • 

    corecore