47 research outputs found

    Non-motor symptom burden in patients with Parkinson's disease with impulse control disorders and compulsive behaviours : results from the COPPADIS cohort

    Get PDF
    The study was aimed at analysing the frequency of impulse control disorders (ICDs) and compulsive behaviours (CBs) in patients with Parkinson's disease (PD) and in control subjects (CS) as well as the relationship between ICDs/CBs and motor, nonmotor features and dopaminergic treatment in PD patients. Data came from COPPADIS-2015, an observational, descriptive, nationwide (Spain) study. We used the validated Questionnaire for Impulsive-Compulsive Disorders in Parkinson's Disease-Rating Scale (QUIP-RS) for ICD/CB screening. The association between demographic data and ICDs/CBs was analyzed in both groups. In PD, this relationship was evaluated using clinical features and treatment-related data. As result, 613 PD patients (mean age 62.47 ± 9.09 years, 59.87% men) and 179 CS (mean age 60.84 ± 8.33 years, 47.48% men) were included. ICDs and CBs were more frequent in PD (ICDs 12.7% vs. 1.6%, p < 0.001; CBs 7.18% vs. 1.67%, p = 0.01). PD patients had more frequent previous ICDs history, premorbid impulsive personality and antidepressant treatment (p < 0.05) compared with CS. In PD, patients with ICDs/CBs presented younger age at disease onset, more frequent history of previous ICDs and premorbid personality (p < 0.05), as well as higher comorbidity with nonmotor symptoms, including depression and poor quality of life. Treatment with dopamine agonists increased the risk of ICDs/CBs, being dose dependent (p < 0.05). As conclusions, ICDs and CBs were more frequent in patients with PD than in CS. More nonmotor symptoms were present in patients with PD who had ICDs/CBs compared with those without. Dopamine agonists have a prominent effect on ICDs/CBs, which could be influenced by dose

    Search for pair production of boosted Higgs bosons via vector-boson fusion in the bb¯bb¯ final state using pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    A search for Higgs boson pair production via vector-boson fusion is performed in the Lorentz-boosted regime, where a Higgs boson candidate is reconstructed as a single large-radius jet, using 140 fb−1 of proton–proton collision data at √s = 13 TeV recorded by the ATLAS detector at the Large Hadron Collider. Only Higgs boson decays into bottom quark pairs are considered. The search is particularly sensitive to the quartic coupling between two vector bosons and two Higgs bosons relative to its Standard Model prediction, K2V . This study constrains K2V to 0.55 &lt; K2V &lt; 1.49 at the 95% confidence level. The value K2V = 0 is excluded with a significance of 3.8 standard deviations with other Higgs boson couplings fixed to their Standard Model values. A search for new heavy spin-0 resonances that would mediate Higgs boson pair production via vector-boson fusion is carried out in the mass range of 1–5 TeV for the first time under several model and decay-width assumptions. No significant deviation from the Standard Model hypothesis is observed and exclusion limits at the 95% confidence level are derived

    Observation of quantum entanglement with top quarks at the ATLAS detector

    Get PDF
    Entanglement is a key feature of quantum mechanics with applications in fields such as metrology, cryptography, quantum information and quantum computation. It has been observed in a wide variety of systems and length scales, ranging from the microscopic to the macroscopic. However, entanglement remains largely unexplored at the highest accessible energy scales. Here we report the highest-energy observation of entanglement, in top–antitop quark events produced at the Large Hadron Collider, using a proton–proton collision dataset with a centre-of-mass energy of √s = 13 TeV and an integrated luminosity of 140 inverse femtobarns (fb)−1 recorded with the ATLAS experiment. Spin entanglement is detected from the measurement of a single observable D, inferred from the angle between the charged leptons in their parent top- and antitop-quark rest frames. The observable is measured in a narrow interval around the top–antitop quark production threshold, at which the entanglement detection is expected to be significant. It is reported in a fiducial phase space defined with stable particles to minimize the uncertainties that stem from the limitations of the Monte Carlo event generators and the parton shower model in modelling top-quark pair production. The entanglement marker is measured to be D = −0.537 ± 0.002 (stat.) ± 0.019 (syst.) for 340 GeV < mtt < 380 GeV. The observed result is more than five standard deviations from a scenario without entanglement and hence constitutes the first observation of entanglement in a pair of quarks and the highest-energy observation of entanglement so far

    Measurements of the production cross-section for a Z boson in association with b- or c-jets in proton–proton collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    This paper presents a measurement of the production cross-section of a Z boson in association with bor c-jets, in proton–proton collisions at √s = 13 TeV with the ATLAS experiment at the Large Hadron Collider using data corresponding to an integrated luminosity of 140 fb−1. Inclusive and differential cross-sections are measured for events containing a Z boson decaying into electrons or muons and produced in association with at least one b-jet, at least one c-jet, or at least two b-jets with transverse momentum pT > 20 GeV and rapidity |y| < 2.5. Predictions from several Monte Carlo generators based on next-to-leading-order matrix elements interfaced with a parton-shower simulation, with different choices of flavour schemes for initial-state partons, are compared with the measured cross-sections. The results are also compared with novel predictions, based on infrared and collinear safe jet flavour dressing algorithms. Selected Z+ ≄ 1 c-jet observables, optimized for sensitivity to intrinsic-charm, are compared with benchmark models with different intrinsic-charm fractions

    Measurement of diferential cross-sections in tt¯ and tt¯+jets production in the lepton+jets fnal state in pp collisions at √s = 13 TeV using 140 fb−1 of ATLAS data

    Get PDF
    Diferential cross-sections for top-quark pair production, inclusively and in association with jets, are measured in pp collisions at a centre-of-mass energy of 13 TeV with the ATLAS detector at the LHC using an integrated luminosity of 140 fb−1. The events are selected with one charged lepton (electron or muon) and at least four jets. The differential cross-sections are presented at particle level as functions of several jet observables, including angular correlations, jet transverse momenta and invariant masses of the jets in the final state, which characterise the kinematics and dynamics of the top-antitop system and the hard QCD radiation in the system with associated jets. The typical precision is 5%–15% for the absolute differential cross-sections and 2%–4% for the normalised differential cross-sections. Next-to-leading-order and next-to-next-to-leading-order QCD predictions are found to provide an adequate description of the rate and shape of the jet-angular observables. The description of the transverse momentum and invariant mass observables is improved when next-to-next-to-leading-order QCD corrections are included

    Constraints on simplified dark matter models involving an s-channel mediator with the ATLAS detector in pp collisions at s = 13 TeV

    Get PDF

    Measurement of the Bs0→ ΌΌ effective lifetime with the ATLAS detector

    Get PDF
    This paper reports the first ATLAS measurement of the B0s → ΌΌ effective lifetime. The measurement is based on the data collected in 2015–2016, amounting to 26.3 fb−1 of 13 TeV LHC proton-proton collisions. The proper decay-time distribution of 58 ± 13 background-subtracted signal candidates is fit with simulated signal templates parameterised as a function of the B0s effective lifetime, with statistical uncertainties extracted through a Neyman construction. The resulting effective measurement of the B0s → ΌΌ lifetime is 0.99+0.42−0.07 (stat.) ± 0.17 (syst.) ps and it is found to be consistent with the Standard Model

    Evidence of pair production of longitudinally polarised vector bosons and study of CP properties in ZZ → 4ℓ events with the ATLAS detector at √s = 13 TeV

    Get PDF
    A study of the polarisation and CP properties in ZZ production is presented. The used data set corresponds to an integrated luminosity of 140 fb−1 of proton-proton collisions at a centre-of-mass energy of 13 TeV recorded by the ATLAS detector at the Large Hadron Collider. The ZZ candidate events are reconstructed using two same-flavour opposite-charge electron or muon pairs. The production of two longitudinally polarised Z bosons is measured with a significance of 4.3 standard deviations, and its cross-section is measured in a fiducial phase space to be 2.45 ± 0.60 fb, consistent with the next-to-leading-order Standard Model prediction. The inclusive differential cross-section as a function of a CP-sensitive angular observable is also measured. The results are used to constrain anomalous CP-odd neutral triple gauge couplings

    A search for top-squark pair production, in final states containing a top quark, a charm quark and missing transverse momentum, using the 139 fb−1 of pp collision data collected by the ATLAS detector

    Get PDF

    Search for direct production of electroweakinos in final states with one lepton, jets and missing transverse momentum in pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    Searches for electroweak production of wino-like chargino pairs, χ˜ + 1 χ˜ − 1 , and of wino-like chargino and next-to-lightest neutralino, χ˜ ± 1 χ˜ 0 2 , are presented. The models explored assume that the charginos decay into a W boson and the lightest neutralino, χ˜ ± 1 → W±χ˜ 0 1 . The next-to-lightest neutralinos are degenerate in mass with the chargino and decay to χ˜ 0 1 and either a Z or a Higgs boson, χ˜ 0 2 → Zχ˜ 0 1 or hχ˜ 0 1 . The searches exploit the presence of a single isolated lepton and missing transverse momentum from the W boson decay products and the lightest neutralinos, and the presence of jets from hadronically decaying Z or W bosons or from the Higgs boson decaying into a pair of b-quarks. The searches use 139 fb−1 of √ s = 13 TeV proton-proton collisions data collected by the ATLAS detector at the Large Hadron Collider between 2015 and 2018. No deviations from the Standard Model expectations are found, and 95% confdence level exclusion limits are set. Chargino masses ranging from 260 to 520 GeV are excluded for a massless χ˜ 0 1 in chargino pair production models. Degenerate chargino and next-to-lightest neutralino masses ranging from 260 to 420 GeV are excluded for a massless χ˜ 0 1 for χ˜ 0 2 → Zχ˜ 0 1 . For decays through an on-shell Higgs boson and for mass-splitting between χ˜ ± 1 /χ˜ 0 2 and χ˜ 0 1 as small as the Higgs boson mass, mass limits are improved by up to 40 GeV in the range of 200–260 GeV and 280–470 GeV compared to previous ATLAS constraints
    corecore