120 research outputs found

    Long-tail Relation Extraction via Knowledge Graph Embeddings and Graph Convolution Networks

    Full text link
    We propose a distance supervised relation extraction approach for long-tailed, imbalanced data which is prevalent in real-world settings. Here, the challenge is to learn accurate "few-shot" models for classes existing at the tail of the class distribution, for which little data is available. Inspired by the rich semantic correlations between classes at the long tail and those at the head, we take advantage of the knowledge from data-rich classes at the head of the distribution to boost the performance of the data-poor classes at the tail. First, we propose to leverage implicit relational knowledge among class labels from knowledge graph embeddings and learn explicit relational knowledge using graph convolution networks. Second, we integrate that relational knowledge into relation extraction model by coarse-to-fine knowledge-aware attention mechanism. We demonstrate our results for a large-scale benchmark dataset which show that our approach significantly outperforms other baselines, especially for long-tail relations.Comment: To be published in NAACL 201

    Availability, Pharmaceutics, Security, Pharmacokinetics, and Pharmacological Activities of Patchouli Alcohol

    Get PDF
    Patchouli alcohol (PA), a tricyclic sesquiterpene, is one of the critical bioactive ingredients and is mainly isolated from aerial part of Pogostemon cablin (known as guanghuoxiang in China) belonging to Labiatae. So far, PA has been widely applied in perfume industries. This review was written with the use of reliable information published between 1974 and 2016 from libraries and electronic researches including NCKI, PubMed, Reaxys, ACS, ScienceDirect, Springer, and Wiley-Blackwell, aiming at presenting comprehensive outline of security, pharmacokinetics, and bioactivities of PA and at further providing a potential guide in exploring the PA and its use in various medical fields. We found that PA maybe was a low toxic drug that was acquired numerously through vegetable oil isolation and chemical synthesis and its stability and low water dissolution were improved in pharmaceutics. It also possessed specific pharmacokinetic characteristics, such as two-compartment open model, first-order kinetic elimination, and certain biometabolism and biotransformation process, and was shown to have multiple biological activities, that is, immunomodulatory, anti-inflammatory, antioxidative, antitumor, antimicrobial, insecticidal, antiatherogenic, antiemetic, whitening, and sedative activity. However, the systematic evaluations of preparation, pharmaceutics, toxicology, pharmacokinetics, and bioactivities underlying molecular mechanisms of action also required further investigation prior to practices of PA in clinic

    Enzyme-mediated dual-targeted-assembly realizes a synergistic anticancer effect

    Get PDF
    We designed and synthesized homochiral-peptide-based boron diketonate complexes. Co-administration of the two stereoisomers in cancer cells led to molecular assembly targeting both the plasma membrane and the lysosomes mediated via membrane-bonded enzymes. The dual-targeted-assembly generates a synergistic anticancer effect with amplified cancer spheroid toxicity and enhanced inhibition efficacy on cancer cell migration

    Chemical Oscillation and Morphological Oscillation in Catalyst-Embedded Lyotropic Liquid Crystalline Gels

    Get PDF
    Liquid crystalline gels offer promising means in generating smart materials due to programmable mechanics and reversible shape changes in response to external stimuli. We demonstrate a simple and convenient method of constructing catalyst-embedded lyotropic liquid crystalline (LLC) gels and achieve chemomechanical oscillator by converting chemical waves in Belousov-Zhabotinsky (BZ) reaction. We observe the directed chemical oscillations on LLC sticks accompanied by small-scale oscillatory swellings-shrinkages that are synchronized with the chemical waves of an LLC stick. To amplify the mechanical oscillations, we further fabricate small LLC fibers and achieve macroscopically oscillatory bending-unbending transition of the LLC fiber driven by a BZ reaction

    Self-Assembly-Directed Cancer Cell Membrane Insertion of Synthetic Analogues for Permeability Alteration

    Get PDF
    Inspired by the metamorphosis of pore-forming toxins from soluble inactive monomers to cytolytic trans-membrane assemblies, we developed self-assembly-directed membrane insertion of synthetic analogues for permeability alteration. An expanded pi-conjugation-based molecular precursor with an extremely high rigidity and a long hydrophobic length that is comparable to the hydrophobic width of plasma membrane was synthesized for membrane-inserted self-assembly. Guided by the cancer biomarker expression in vitro, the soluble precursors transform into hydrophobic monomers forming assemblies inserted into the fluid phase of the membrane exclusively. Membrane insertion of rigid synthetic analogues destroys the selective permeability of the plasma membrane gradually. It eventually leads to cancer cell death, including drug resistant cancer cells

    Converting metal-organic framework particles from hydrophilic to hydrophobic by an interfacial assembling route

    Get PDF
    Here we propose to modify the hydrophilicity of metal-organic framework (MOF) particles by an interfacial assembling route, which is based on the surface-active nature of MOF particles. It was found that hydrophilic UiO-66-NH₂ particles can be converted to hydrophobic particles through an oil-water interfacial assembling route. The underlying mechanism for the conversion of UiO-66-NH₂ was investigated by X-ray photoelectron spectroscopy and FT-IR spectroscopy. It was revealed that the close assembly of UiO-66-NH₂ particles at the oil-water interface strengthens the coordination between organic ligands and metal ions, which results in a decrease in the proportion of hydrophilic groups on UiO-66-NH₂ particle surfaces. Hydrophobic UiO-66-NH₂ particles show improved adsorption capacity for dyes in organic solvents compared with pristine UiO-66-NH₂ particles. It is expected that the interfacial assembling route can be applied to the synthesis of different kinds of MOF materials with tunable hydrophilicity or hydrophobicity required for diverse applications

    Pharmacological Activities of Patchouli Alcohol

    Get PDF
    Patchouli alcohol (PA), a tricyclic sesquiterpene, is one of the critical bioactive ingredients and is mainly isolated from aerial part of Pogostemon cablin (known as guanghuoxiang in China) belonging to Labiatae. So far, PA has been widely applied in perfume industries. This review was written with the use of reliable information published between 1974 and 2016 from libraries and electronic researches including NCKI, PubMed, Reaxys, ACS, ScienceDirect, Springer, and Wiley-Blackwell, aiming at presenting comprehensive outline of security, pharmacokinetics, and bioactivities of PA and at further providing a potential guide in exploring the PA and its use in various medical fields. We found that PA maybe was a low toxic drug that was acquired numerously through vegetable oil isolation and chemical synthesis and its stability and low water dissolution were improved in pharmaceutics. It also possessed specific pharmacokinetic characteristics, such as two-compartment open model, first-order kinetic elimination, and certain biometabolism and biotransformation process, and was shown to have multiple biological activities, that is, immunomodulatory, anti-inflammatory, antioxidative, antitumor, antimicrobial, insecticidal, antiatherogenic, antiemetic, whitening, and sedative activity. However, the systematic evaluations of preparation, pharmaceutics, toxicology, pharmacokinetics, and bioactivities underlying molecular mechanisms of action also required further investigation prior to practices of PA in clinic

    B serum proteome profiles revealed dysregulated proteins and mechanisms associated with insomnia patients: A preliminary study

    Get PDF
    BackgroundInsomnia is a clinical problem of significant public health importance; however, the underlying pathogenesis of this disorder is not comprehensively understood.MethodsTo identify potential treatment targets and unfold one of the gaps that were involved in insomnia pathological mechanisms, we employed a tandem mass tag-based (TMT) quantitative proteomics technology to detect differentially expressed proteins (DEPs) in serum from patients with insomnia and controls. DEPs were further analyzed by bioinformatics platforms. In addition, parallel reaction monitoring (PRM) was used to verify the TMT results.ResultsPatients with insomnia had poorer sleep quality compared with healthy controls. A total of 106 DEPs were identified among patients with insomnia and controls. They were mainly enriched in immune and inflammation-related biological functions and signaling pathways. Using the protein–protein interaction network, we screened the 10 most connected proteins as key DEPs. We predicted that four key DEPs were subject to targeted regulation by natural compounds of herbs. Eight key DEPs were validated using PRM in an additional 15 patients with insomnia and 15 controls, and the results also supported the experimental findings.ConclusionWe identified aberrantly expressed proteins in insomnia that may be involved in the immune-inflammatory response. The 10 key DEPs screened may be potential targets for insomnia, especially FN1, EGF, HP, and IGF1. The results of this study will broaden our understanding of the pathological mechanisms of insomnia and provide more possibilities for pharmacotherapy

    Rare-earth-doped fluoride nanoparticles with engineered long luminescence lifetime for time-gated: In vivo optical imaging in the second biological window

    Full text link
    Biomedicine is continuously demanding new luminescent materials to be used as optical probes for the acquisition of high resolution, high contrast and high penetration in vivo images. These materials, in combination with advanced techniques, could constitute the first step towards new diagnosis and therapy tools. In this work, we report on the synthesis of long lifetime rare-earth-doped fluoride nanoparticles by adopting different strategies: core/shell and dopant engineering. The here developed nanoparticles show intense infrared emission in the second biological window with a long luminescence lifetime close to 1 millisecond. These two properties make the here presented nanoparticles excellent candidates for time-gated infrared optical bioimaging. Indeed, their potential application as optical imaging contrast agents for autofluorescence-free in vivo small animal imaging has been demonstrated, allowing high contrast real-time tracking of gastrointestinal absorption of nanoparticles and transcranial imaging of intracerebrally injected nanoparticles in the murine brainThis work was supported in part by the grants from the Fundamental Research Funds for the Central Universities, China (HIT. BRETIV.201503 and AUGA5710052614) and the National Natural Science Foundation of China (51672061). We thank Dr Lina Wu at the Fourth Hospital of Harbin Medical University for her kind help with the MTT assay, and Dr Tymish Y. Ohulchanskyy at Shenzhen University for his kind help with the fluorescence lifetime measurement. The work was also supported by the Ministerio de Economia y Competitividad of Spain (grant MAT2016-75362-C3-1-R). Jie Hu acknowledges the scholarship from the China Scholarship Council (No. 201506650003). Dirk H. Ortgies is grateful to the Spanish Ministry of Economy and Competitiveness for a Juan de la Cierva scholarship (No. FJCI-2014-21101) and the Spanish Institute of Health (ISCIII) for a Sara Borell Fellowship (No. CD17/00210
    • 

    corecore