85 research outputs found

    Molecular dynamics simulation of graphene sinking during chemical vapor deposition growth on semi-molten Cu substrate

    Get PDF
    Copper foil is the most promising catalyst for the synthesis of large-area, high-quality monolayer graphene. Experimentally, it has been found that the Cu substrate is semi-molten at graphene growth temperatures. In this study, based on a self-developed C-Cu empirical potential and density functional theory (DFT) methods, we performed systematic molecular dynamics simulations to explore the stability of graphene nanostructures, i.e., carbon nanoclusters and graphene nanoribbons, on semi-molten Cu substrates. Many atomic details observed in the classical MD simulations agree well with those seen in DFT-MD simulations, confirming the high accuracy of the C-Cu potential. Depending on the size of the graphene island, two different sunken-modes are observed: (i) graphene island sinks into the first layer of the metal substrate and (ii) many metal atoms surround the graphene island. Further study reveals that the sinking graphene leads to the unidirectional alignment and seamless stitching of the graphene islands, which explains the growth of large single-crystal graphene on Cu foil. This study deepens our physical insights into the CVD growth of graphene on semi-molten Cu substrate with multiple experimental mysteries well explained and provides theoretic references for the controlled synthesis of large-area single-crystalline monolayer graphene

    Pleistocene glacial cycle effects on the phylogeography of the Chinese endemic bat species, Myotis davidii

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Global climatic oscillations, glaciation cycles and the unique geographic topology of China have profoundly influenced species population distributions. In most species, contemporary distributions of populations cannot be fully understood, except in a historical context. Complex patterns of Pleistocene glaciations, as well as other physiographic changes have influenced the distribution of bat species in China. Until this study, there had been no phylogeographical research on <it>Myotis davidii</it>, an endemic Chinese bat. We used a combination of nuclear and mitochondrial DNA markers to investigate genetic diversity, population structure, and the demographic history of <it>M. davidii</it>. In particular, we compared patterns of genetic variation to glacial oscillations, topography, and environmental variation during the Pleistocene in an effort to explain current distributions in light of these historical processes.</p> <p>Results</p> <p><it>M. davidii </it>comprises three lineages (MEP, SWP and SH) based on the results of molecular variance analysis (AMOVA) and phylogenetic analyses. The results of a STRUCTURE analysis reveal multi-hierarchical population structure in <it>M. davidii</it>. Nuclear and mitochondrial genetic markers reveal different levels of gene flow among populations. In the case of mtDNA, populations adhere to an isolation-by-distance model, whereas the individual assignment test reveals considerable gene flow between populations. MDIV analysis indicate that the split of the MEP and SWP/SH lineages, and from the SWP and SH lineages were at 201 ka BP and 158 ka BP, respectively. The results of a mismatch distribution analysis and neutrality tests indicate a population expansion event at 79.17 ka BP and 69.12 ka BP in MEP and SWP, respectively.</p> <p>Conclusions</p> <p>The complex demographic history, discontinuous extant distribution of haplotypes, and multiple-hierarchy population structure of <it>M. davidii </it>appear associated with climatic oscillations, topography and eco-environmental variation of China. Additionally, the three regions are genetically differentiated from one another in the entire sample set. The degree of genetic differentiation, based on the analysis of mtDNA and nDNA, suggests a male-mediated gene flow among populations. Refuges were in the MEP, SH and the lower elevations of SWP regions. This study also provides insights for conservation management units (MEP, SWP and SH).</p

    Cytoreductive Surgery and Hyperthermic Intraperitoneal Chemotherapy for Pseudomyxoma Peritonei of Appendiceal Origin - 801 Cases from a Single Institution in China

    Get PDF
    Aim: As more and more centers has published their treatment results ofpseudomyxoma peritonei (PMP) with cytoreductive surgery (CRS) andhyperthermic intraperitoneal chemotherapy (HIPEC), the data from Chinais missing. Myxoma Department of Aerospace Hospital is the biggestcenter treating PMP in China. The purpose of this study is to report theearly and long-term outcomes for PMP from this single center. Methods:801 appendix-derived PMP out of 1008 consecutive patients treated inMyxoma Department of Aerospace Hospital between 2008 and 2019 wereretrospectively analyzed. Results: Complete cytoreductive surgery (CCRS)was achieved in 240 (30%) patients with median PCI of 14(1~39), andthe rest had maximal tumor debulking (MTD), HIPEC was implementedin 96.3% of CCRS and 78.6% of MTD. The major morbidity (gradeIII/IV) was 11.4% and the 30-day operative mortality is 0.7%. The 5-and 10-year OS of CCRS was 76.9% and 64.1%, which is significantlyhigher than MTD (5-, 10-year OS as 36.1%, 27.1%; p20, MTD, high pathologic grade and without HIPECwere independent factors predicting poorer prognosis. Conclusions: CCRS+HIPEC can benefit PMP well with controllable risks. MTD+HIPEC maybenefit PMP as well when CCRS cannot be achieved after fully asscessmentby an experienced peritoneal maglignacy center, but the surgery should beperformed as limited as possible

    Pressure-induced emission of cesium lead halide perovskite nanocrystals.

    Get PDF
    Metal halide perovskites (MHPs) are of great interest for optoelectronics because of their high quantum efficiency in solar cells and light-emitting devices. However, exploring an effective strategy to further improve their optical activities remains a considerable challenge. Here, we report that nanocrystals (NCs) of the initially nonfluorescent zero-dimensional (0D) cesium lead halide perovskite Cs4PbBr6 exhibit a distinct emission under a high pressure of 3.01 GPa. Subsequently, the emission intensity of Cs4PbBr6 NCs experiences a significant increase upon further compression. Joint experimental and theoretical analyses indicate that such pressure-induced emission (PIE) may be ascribed to the enhanced optical activity and the increased binding energy of self-trapped excitons upon compression. This phenomenon is a result of the large distortion of [PbBr6]4- octahedral motifs resulting from a structural phase transition. Our findings demonstrate that high pressure can be a robust tool to boost the photoluminescence efficiency and provide insights into the relationship between the structure and optical properties of 0D MHPs under extreme conditions

    An Efficacious Endometrial Sampler for Screening Endometrial Cancer

    Get PDF
    Recently, the research on early detection of precancerous change and endometrial carcinoma has been focusing on minimally invasive procedures for screening. On this basis, we aim to verify the feasibility of endometrial samplers for screening endometrial cancer using Li Brush. We recruited patients undergoing hysterectomy for different diseases from the Inpatient Department of the Department of Obstetrics and Gynecology. Before surgery, endometrial cells were collected by Li Brush. The cytopathologic diagnosis from Li Brush and the histopathologic diagnosis from hysterectomy in the same patient were compared to calculate sensitivity (Se), specificity (Sp), false-negative rate (FNR), false-positive rate (FPR), positive predictive value (PV+) %, and negative predictive value (PV-). The research enrolled 293 women into this self-controlled trial. According to the hypothesis test of paired four lattices, we obtained the following indicators: Se 92.73, Sp 98.15, FNR 7.27, FPR 1.85, PV+92.73, and PV−98.15%. The endometrial sampler Li Brush is an efficacious instrument for screening endometrial cancer

    Comparative analysis of the transcriptome across distant species

    Get PDF
    The transcriptome is the readout of the genome. Identifying common features in it across distant species can reveal fundamental principles. To this end, the ENCODE and modENCODE consortia have generated large amounts of matched RNA-sequencing data for human, worm and fly. Uniform processing and comprehensive annotation of these data allow comparison across metazoan phyla, extending beyond earlier within-phylum transcriptome comparisons and revealing ancient, conserved features. Specifically, we discover co-expression modules shared across animals, many of which are enriched in developmental genes. Moreover, we use expression patterns to align the stages in worm and fly development and find a novel pairing between worm embryo and fly pupae, in addition to the embryo-to-embryo and larvae-to-larvae pairings. Furthermore, we find that the extent of non-canonical, non-coding transcription is similar in each organism, per base pair. Finally, we find in all three organisms that the gene-expression levels, both coding and non-coding, can be quantitatively predicted from chromatin features at the promoter using a 'universal model' based on a single set of organism-independent parameters

    Columnar structure deposition regulation and surface modification of PS-PVD thermal barrier coatings

    No full text
    Plasma spray-physical vapor deposition(PS-PVD) technology which has many characteristics of the multi-structure regulation, provides the possibility for the preparation of thermal barrier coatings with high thermal insulation and long life. It is one of the key technology to realize the development of high performance aero-engine. The unique microstructure of PS-PVD columnar structure coatings has dual advantages of high thermal insulation and long thermal cycle life, and has broad application prospects in the field of thermal barrier coatings for aircraft engines. However, the process control of PS-PVD columnar structure coating is achieved on the basis of a large number of experiments, and there is a lack of relevant theoretical research. Moreover, the CaO-MgO-Al2O3-SiO2(CMAS) corrosion failure problem faced by the columnar structure coating with high porosity restricts the use of the coating. The influence of deposition unit phase states on the coating structure was described from the structural characteristics of the coating, and the vapor deposition mechanism of columnar coating was revealed. Based on the phase transition of coating material in the jet, the essence of process parameters regulation was clarified. In addition, the corrosion mechanism of CMAS and the corrosion resistance mechanism of Al-modified coating were investigated. Finally, the structure control and performance improvement of PS-PVD coating and the application of PS-PVD technology in environmental barrier coatings and functional films were prospected

    Test selection and optimization for PHM based on failure evolution mechanism model

    No full text
    corecore