51 research outputs found

    SAN: a robust end-to-end ASR model architecture

    Full text link
    In this paper, we propose a novel Siamese Adversarial Network (SAN) architecture for automatic speech recognition, which aims at solving the difficulty of fuzzy audio recognition. Specifically, SAN constructs two sub-networks to differentiate the audio feature input and then introduces a loss to unify the output distribution of these sub-networks. Adversarial learning enables the network to capture more essential acoustic features and helps the models achieve better performance when encountering fuzzy audio input. We conduct numerical experiments with the SAN model on several datasets for the automatic speech recognition task. All experimental results show that the siamese adversarial nets significantly reduce the character error rate (CER). Specifically, we achieve a new state of art 4.37 CER without language model on the AISHELL-1 dataset, which leads to around 5% relative CER reduction. To reveal the generality of the siamese adversarial net, we also conduct experiments on the phoneme recognition task, which also shows the superiority of the siamese adversarial network

    Steam explosion pretreatment enhancing enzymatic digestibility of overground tubers of tiger nut (Cyperus esculentus L.)

    Get PDF
    IntroductionTiger nut (TN) is recognized as a high potential plant which can grow in well-drained sandy or loamy soils and provide food nutrients. However, the overground tubers of TN remain unutilized currently, which limits the value-added utilization and large-area cultivation of this plant.MethodsIn the present study, the overground tubers of TN were subjected to enzymatic hydrolysis to produce fermentable sugars for biofuels production. Steam explosion (SE) was applied to modify the physical-chemical properties of the overground tubers of TN for enhancing its saccharification.Results and discussionResults showed that SE broke the linkages of hemicellulose and lignin in the TN substrates and increased cellulose content through removal of hemicellulose. Meanwhile, SE cleaved inner linkages within cellulose molecules, reducing the degree of polymerization by 32.13–77.84%. Cellulose accessibility was significantly improved after SE, which was revealed visibly by the confocal laser scanning microscopy imaging techniques. As a result, enzymatic digestibility of the overground tubers of TN was dramatically enhanced. The cellulose conversion of the SE treated TN substrates reached 38.18–63.97%, which was 2.5–4.2 times higher than that without a SE treatment.ConclusionTherefore, SE pretreatment promoted saccharification of the overground tubers of TN, which paves the way for value-added valorization of the TN plants

    Heritability and genomics of gene expression in peripheral blood

    Get PDF
    We assessed gene expression profiles in 2,752 twins, using a classic twin design to quantify expression heritability and quantitative trait loci (eQTL) in peripheral blood. The most highly heritable genes (~777) were grouped into distinct expression clusters, enriched in gene-poor regions, associated with specific gene function/ontology classes, and strongly associated with disease designation. The design enabled a comparison of twin-based heritability to estimates based on dizygotic IBD sharing and distant genetic relatedness. Consideration of sampling variation suggests that previous heritability estimates have been upwardly biased. Genotyping of 2,494 twins enabled powerful identification of eQTLs, which were further examined in a replication set of 1,895 unrelated subjects. A large number of local eQTLs (6,988) met replication criteria, while a relatively small number of distant eQTLs (165) met quality control and replication standards. Our results provide an important new resource toward understanding the genetic control of transcription

    Insight-HXMT observations of Swift J0243.6+6124 during its 2017-2018 outburst

    Full text link
    The recently discovered neutron star transient Swift J0243.6+6124 has been monitored by {\it the Hard X-ray Modulation Telescope} ({\it Insight-\rm HXMT). Based on the obtained data, we investigate the broadband spectrum of the source throughout the outburst. We estimate the broadband flux of the source and search for possible cyclotron line in the broadband spectrum. No evidence of line-like features is, however, found up to 150 keV\rm 150~keV. In the absence of any cyclotron line in its energy spectrum, we estimate the magnetic field of the source based on the observed spin evolution of the neutron star by applying two accretion torque models. In both cases, we get consistent results with B∼1013 GB\rm \sim 10^{13}~G, D∼6 kpcD\rm \sim 6~kpc and peak luminosity of >1039 erg s−1\rm >10^{39}~erg~s^{-1} which makes the source the first Galactic ultraluminous X-ray source hosting a neutron star.Comment: publishe

    Overview to the Hard X-ray Modulation Telescope (Insight-HXMT) Satellite

    Full text link
    As China's first X-ray astronomical satellite, the Hard X-ray Modulation Telescope (HXMT), which was dubbed as Insight-HXMT after the launch on June 15, 2017, is a wide-band (1-250 keV) slat-collimator-based X-ray astronomy satellite with the capability of all-sky monitoring in 0.2-3 MeV. It was designed to perform pointing, scanning and gamma-ray burst (GRB) observations and, based on the Direct Demodulation Method (DDM), the image of the scanned sky region can be reconstructed. Here we give an overview of the mission and its progresses, including payload, core sciences, ground calibration/facility, ground segment, data archive, software, in-orbit performance, calibration, background model, observations and some preliminary results.Comment: 29 pages, 40 figures, 6 tables, to appear in Sci. China-Phys. Mech. Astron. arXiv admin note: text overlap with arXiv:1910.0443

    Weakened Interfacial Hydrogen Bond Connectivity Drives Selective Photocatalytic Water Oxidation toward H<sub>2</sub>O<sub>2</sub> at Water/Brookite-TiO<sub>2</sub> Interface

    No full text
    The formation of H2O2 through the two-electron photocatalytic water oxidation reaction (WOR) is significant but encounters the competition with the four-electron O2 evolution reaction. Recent studies showed a crystal-phase dependence in H2O2 selectivity, where high purity brookite TiO2 (b-TiO2) exhibits remarkable H2O2 selectivity in contrast to the common rutile phase TiO2 (r-TiO2). However, the origin of such a structure-induced selectivity preference remains elusive, primarily due to the complexities associated with the solid–liquid interface system and excited-state chemistry. Herein, we conducted a comprehensive investigation into the selectivity mechanism of WOR at the water/b-TiO2(210) and water/r-TiO2(110) interfaces, employing first-principles molecular dynamics simulations and microkinetic analyses. Intriguingly, our results reveal that the intrinsic catalytic ability of the b-TiO2(210) itself does not enhance H2O2 selectivity compared to r-TiO2(110). Instead, it is the weakened interfacial hydrogen bond connectivity, modulated by the herringbone-like local atomic structure of the b-TiO2(210) surface, that determines the selectivity. Specifically, this weakened H-bond connectivity (i.e., local low water density) at the interface, owing to the strong water adsorption and distinct adsorption orientation, can stabilize the OH• radical and inhibit its deprotonation, leading to an improved H2O2 selectivity. By contrast, the relatively strong interface H-bond connectivity established over r-TiO2(110) accelerates the deprotonation of OH•, with the OH• coverage being 3 orders of magnitude lower than at the water/b-TiO2(210) interface. This study quantitatively demonstrates that the local H-bond structure (water density) at the liquid/solid interface significantly influences photocatalytic selectivity, and this insight may offer a rational approach to enhance the H2O2 selectivity

    Estimation of Yield Function for Anisotropic Aggregate of FCC Crystallites

    No full text
    In this paper, we give an simple but approximate yield surface for single FCC crystals in Hill&rsquo;s criterion form by Schmid&rsquo;s law and nonlinear optimization theory. Assuming that all FCC crystallites in a polycrystal have the same (current) critical resolved shear stress &tau;c for slip, we derive two closed but approximate yield functions through the orientational averaging of all FCC crystallites&rsquo; yield surfaces in the polycrystal. The effect of crystallography on the two yield functions are described by the orientation distribution function
    • …
    corecore