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Introduction: Tiger nut (TN) is recognized as a high potential plant which

can grow in well-drained sandy or loamy soils and provide food nutrients.

However, the overground tubers of TN remain unutilized currently, which limits

the value-added utilization and large-area cultivation of this plant.

Methods: In the present study, the overground tubers of TN were subjected to

enzymatic hydrolysis to produce fermentable sugars for biofuels production.

Steam explosion (SE) was applied to modify the physical-chemical properties

of the overground tubers of TN for enhancing its saccharification.

Results and discussion: Results showed that SE broke the linkages of

hemicellulose and lignin in the TN substrates and increased cellulose content

through removal of hemicellulose. Meanwhile, SE cleaved inner linkages within

cellulose molecules, reducing the degree of polymerization by 32.13–77.84%.

Cellulose accessibility was significantly improved after SE, which was revealed

visibly by the confocal laser scanning microscopy imaging techniques. As a

result, enzymatic digestibility of the overground tubers of TN was dramatically

enhanced. The cellulose conversion of the SE treated TN substrates reached

38.18–63.97%, which was 2.5–4.2 times higher than that without a SE

treatment.

Conclusion: Therefore, SE pretreatment promoted saccharification of the

overground tubers of TN, which paves the way for value-added valorization

of the TN plants.

KEYWORDS

lignocellulosic biomass, tiger nut, enzymatic hydrolysis, steam explosion

pretreatment, biorefinery

Introduction

Energy security is essential for the development of global economy. Traditional fossil
fuels (e.g., oil, coal) are still the main energy sources in the world currently. However,
the consumption of fossil fuels leads to severe environmental deterioration (1). Broad
consensus on fossil fuel reduction and pollution minimization stipulates great research
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interest to renewable fuels (2). Nearly all cellulose is produced
by photosynthetic higher plants and algae in the nature, and
is considered to participate in the most vital global carbon
flows. Additionally, cellulose is the only origin of “green” fixed
carbon source and widely available worldwide (3). Biofuels from
inedible cellulose are deemed as clean and renewable alternatives
to the traditional fossil fuels, which mitigate climate change and
reduce greenhouse gas emission. Commercial biofuels require
cheap resources that are easy to harvest and collect. Tiger nut
(Cyperus esculentus L., TN), a Corsa sedge genus perennial herb,
is dated back to ∼4,000 years ago and now widely cultivated
in the tropic or temperate regions, with an annual mass of
9,000 metric tons (4). TN can be a major grower in well-
drained sandy or loamy soils to achieve a high productivity and
economic efficiency. The underground tubers of TN contain
unsaturated fatty acids, protein, and vitamin E, which are
commonly regarded as a “health” food. However, there is seldom
report regarding the utilization of the overground tubers, despite
more than 90 cm in height of the solitary stems growing from a
tuber. Overground tubers of TN represent promising resources
for biofuels production.

The key step in biofuels production is to release fermentable
sugars form cellulose with economic competitiveness (5).
Compared to chemical strategies, biological conversion of
cellulose exhibits more attractiveness owing to the lower energy
input and less environment pollution (6). Enzymatic hydrolysis
of cellulose needs valid binding between the surface of substrate
and cellulase. Cellulose is a linear polymer condensed by D-
anhydroglucopyranose through β-1,4-glycosidic bonds, which
exists as successive and stacked sheets of anhydroglucopyranose
on top of each other, forming a three-dimensional particle. This
particle exhibits distinct “faces” that interact with the aqueous
environment and enzymes (7). The “faces” can be deemed
as both external and internal surfaces. The former is closely
related to crystallinity index (CrI), degree of polymerization
(DP), and pore size, whereas the latter is correlated with shape
or particle size. For example, it is reported that crystalline
cellulose hydrolysis rates are commonly 3–30 times faster than
amorphous cellulose (8). Additionally, other components,
such as hemicellulose, lignin, and pectin, are commonly
interconnected through non-covalent and covalent linkages,
forming a complicated structural and chemical network coats
the “faces” or generates non-productive enzyme binding. This
physical and chemical complexity makes cellulose recalcitrant
to enzymatic hydrolysis. Additionally, the recalcitrance presents
substantial differences according to different biomass, organs,
and maturity stages. Therefore, establishing appropriate
pretreatment and saccharification technologies to improve the
cellulose accessibility to cellulases is significantly important for
enhancing the enzymatic digestibility.

Pretreatment is considered to be a foundational step to
efficiently facilitate enzymatic hydrolysis through removing
stubborn components and deconstructing lignocellulosic

matrix, which is also a key criterion to determine economic
viability of large-scale industrialization (9). Steam explosion
(SE), a kind of mechanico-physico-chemical pretreatment,
is becoming one of the most commonly used technologies
with huge commercial potential, because it needs low capital
investment and energy requirements (10). Also, SE is a clean
process without any chemical addition. During the SE process,
the sample is treated by saturated steam at high temperature
and pressure for a short duration time (cooking stage), during
which the hydrolytic breakdown occurs. And then a sudden
pressure drop (decompression phase) occurs, which results in
a vapor expansion inside the “capillary-like” structures and a
dislocation of the fibrous structure. SE has been proven efficient
for fractionating a broad range of lignocellulosic feedstock,
including wheat straw, sugarcane bagasse, and corn stover. The
byproducts could be generated during the SE process, which
could be toxic for the following valorization processes. These
inhibiting compounds are divided into three main groups:
weak acids, furan derivatives, and phenolic compounds (11).
In detail, acetic acid is formed from hemicellulose, which
further reduces the pH of the cooking liquor. The low pH and
high temperature during SE could promote monosaccharide
degradation to generate furfural, 5-hydroxymethylfurfural
(HMF), and levulinic acid. The phenolic compounds are
formed from lignin degradation (12). Our previous studies
have shown that the redistribution of lignin facilitates the
enzymatic digestibility of cellulose (13). However, the precise
mechanism from an integral sense, especially, the influence of
lignin distribution around the surface of cell wall caused by SE
pretreatment on the cellulose accessibility remains ambiguous.
To the best of our knowledge, SE pretreatment of TN biomass
is seldom studied. In order to facilitate the value-added
utilization of the TN plants, SE was applied to modify the
physical-chemical properties of the overground tubers of TN.
The chemical compositions and physical parameters (e.g., CrI
and DP) were measured to investigate the influences of SE
on the TN substrates. Meanwhile, the morphological changes
of the TN materials during SE processes were also analyzed.
Enzymatic digestibility performance of raw and pretreated TN
was compared to examine the effects of SE on saccharification
efficiency. These findings from the present research would shed
some light on the mechanisms of SE pretreatment and promote
the valorization of TN biomass.

Materials and methods

Lignocellulosic materials and chemicals

The TN used in this study was cultivated in an experimental
field of Inner Mongolia Academy of Agricultural & Animal
Husbandry Sciences, China, and was harvested in September
2021. The overground tubers were collected, washed to remove

Frontiers inNutrition 02 frontiersin.org

https://doi.org/10.3389/fnut.2022.1093277
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Zhao et al. 10.3389/fnut.2022.1093277

TABLE 1 Conditions for SE pretreatment.

Pressure
(MPa)

Temperature
(◦C)

Time
(min)

Severity
factor (SF)

1.2 188 5 3.29

1.5 198 10 3.89

1.8 207 10 4.15

1.5 198 20 4.19

impurity, and air-dried to constant weight. Cellulase cocktail
(Trichoderma viride G) with average activity of 90.3 filter paper
unit per gram was provided by Shanghai Yuanye Co., Ltd.
Other chemicals (analytic grade) were purchased from Huhhot
Shengkang Biotechnology Company, China.

Steam explosion pretreatment

The dried overground tubers of TN was chopped to smaller
sizes (∼10 cm in length) and pre-soaked in water with a solid-
liquid ratio of 1:10 (w/v) overnight to guarantee the saturation
moisture. The saturated sample was drained off and placed into
the SE equipment (Hebi Company, China) which consisted of
a steam generator, a 400mL reaction cylinder, and a collecting
tank. As shown in Table 1, four conditions with different severity
factor (SF) were selected to obtain various pretreated TN (PTN).
SF of each condition was determined according to equation
developed by Melissa (14), shown below:

SF = log10 [t ∗ exp (
T − 100

14.75
)] (1)

Where t is the residence time, min; and T is the holding
temperature, ◦C.

After each pretreatment, the PTN was washed in a water
bath with a solid-liquid ratio of 1:10 (w/v) at room temperature
for 30min to remove the soluble compounds and then oven-
dried at 63◦C to a constant weight. The other saturated sample
without a SE pretreatment was also oven-dried at 63◦C to a
constant weight and named as unpretreated TN (UTN). The
PTN and UTN were shredded to powders with a particle
size of 0.42–0.88mm. Three repetitions were performed for
each treatment.

Chemical analysis

Composition analysis

The lignin and monomeric sugars in solid samples
were analyzed using two-stage acid hydrolysis method
recommended by National Renewable Energy Laboratory (15).
The concentration of monosaccharides were analyzed through
HPLC system equipped with a Bio-Rad Aminex HPX-87H

column, with 5mM sulfuric acid as mobile phase, eluted flow
rate of 0.6 mL/min, and column temperature of 50◦C.

Fourier transform infrared spectroscopy

The Infrared spectra of PTN and UTN in the region 4,000–
400 cm−1 were obtained by FTIR spectrophotometer (IR-
Affinity-1S, Shimadzu) in transmission mode, with 4 cm−1

resolution and 32 scans at room temperature. Milled sample
powder (1mg, 60 mesh) was mixed with of KBr (50mg,
spectrum grade) and pressed into a pellet. The characteristic
bands were identified and analyzed according to literatures (16).

Physical analysis

Cellulose accessibility

The cellulose accessibility of various solid substrates was
determined with the theoretical maximum adsorption amount
of Congo Red (17). Precise 200mg of dry sample was
incubated with 4mL of dye sodium citrate buffer (50mM,
pH 4.8) in a 10mL centrifuge with gentle agitation at 50◦C
for 24 h. After centrifugation at 6,200×g for 10min, the
absorbance of the supernatant was measured using UV-visible
spectrophotometer (UV-1780, Shimadzu, Japan) at 498 nm. The
adsorption isothermwas determined in duplicate with a series of
increasing dye concentrations (0, 0.1, 0.5, 2.0, 3.0, and 4.0 g/L)
and fitted by linear regression in Excel.

X-ray di�raction

The XRD patterns of various samples were detected on a X-
ray diffractometer instrument (X’Pert PRO, PANalytical) using
Cu Kα radiation (k = 1.54 Å), with a scattering angle (2θ)
ranging from 5◦ to 40◦ and scanning increments of 0.02◦, at 40
kV and 30mA. The crystallinity index (CrI) was calculated as
follows (18).

CrI = (I002 − Iam)
∗ 100/I002 (2)

Where I002 represents the peak intensity of the crystalline
area of the biomass in approximate 2θ between 22◦ and 23◦; Iam
represents theminimum intensity of the amorphous area in∼2θ

between 18◦ and 19◦.

Microscope imaging analysis

Transverse sections (12µm) of various samples were
obtained by cryostat (Leica, RM2015) at −20◦C. Whole and
uniform sections were maintained on a glass slide and observed
by confocal laser scanning microscopy (CLSM, NIKON, AIR)
with the identical condition: 20×/1.40 NA Plan-Apochromatic
objective lens, laser source at 20% power, and pinhole size of
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FIGURE 1

Compositions of TN before and after SE pretreatment.

1AU. Excitation was conducted using a wavelength of 405 nm
for lignin autofluorescence, and emissions 410–480 nm (blue
fluorescence) was collected. At least five images for each sample
were collected.

Enzymatic hydrolysis

Enzymatic hydrolysis was carried out with a cellulase loading
of 20 FPU/g in 100mL Erlenmeyer flasks containing 2 g of solid
substrate and 40ml of sodium citrate buffer (50mM, pH 4.8,
supplementing with 0.01 g/mL sodium azide) in a water–bath.
The Erlenmeyer flasks were incubated in a shaker at 50◦C and
shaken at 150 rpm for 48 h. The generated glucose in enzymatic
hydrolysates was analyzed on HPLC. The cellulose conversion
based on cellulase mediated hydrolysis was used to express
the enzymatic digestibility, which is calculated as the following
Equation (19).

Cellulose conversion = (mg
∗0.9+mc

∗0.95)/m (3)

Where mg and mc represents the amount of generated
glucose and cellobiose during the enzymatic hydrolysis,
respectively; 0.9 and 0.95 represents the conversion factor for
glucan to glucose and cellobiose to glucose, respectively; m
represents the amount of cellulose in substrate.

Results and discussion

Chemical properties of raw and
pretreated tiger nut

Chemical composition

Chemical composition is of great interest as it relates to the
pretreatment effectiveness and further conversion performance

FIGURE 2

FTIR spectra of TN before and after SE pretreatment.

(20). It was found that the glucan content increased from
20.51% (UTN) to 38.22% (SF = 4.19) with the increment
of SF (Figure 1), which was beneficial for increasing the
cellulose accessibility and enhancing the enzymatic hydrolysis
performance. In contrast, the xylan content gradually decreased
from 15.96 to 6.97%, and the declining trend was not obvious
when the SF reached 4.15. The results showed that SE removed
hemicellulose significantly from the solid biomass materials.
The xylan content decreased from 14.51 to 3.51% in the solid
substrates as the SE severity increased. Eom and coworkers also
reported that SE pretreatment degraded hemicellulose within
rubber wood biomass, which was in line with the results in the
present study (21). Lignin generally acts as a physical barrier
or irreversibly adsorbs cellulases to prevent cellulose hydrolysis
(22). However, inconsistent trend of lignin content during SE is
often reported. Most published literatures reported that lignin
content increased in the SE treated biomass substrates. For
example, Nasir et al. found that the lignin content increased by
25.85% in the SE (1.0 MPa, 184◦C, 15min) treated corn stover
(23). Whereas, the other party assumed the decreased results of
lignin contents during the SE. Besserer and coworkers reported
a delignification of 3 to 75% with an average of ∼25% after SE
treatments on Aucoumea klaineana Pierre sapwood based on
both the microscopical data and chemical analysis (24). The
lignin profiles after SE pretreatment was investigated in the
present study to reveal the effects of SE on TN lignin. Results
showed that the lignin content within PTN increased after
SE pretreatment. It was deduced that lignin content variation
might depend on the SE pretreatment time and temperature.
Overall, SE pretreatment altered the compositions of TN
materials, which should influence the subsequent enzymatic
digestibility performance.

FTIR spectra

The FTIR spectra in band shapes of UTN and PTN samples
were presented and compared to clarify the details of chemical
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variations, especially for the representative spectral region of
1,800–800 cm−1. As shown in Figure 2, there was a significant
peak at 3,356 cm−1 (O–H bending in polysaccharides) in
all samples, indicating the preservation of cellulose. The
mild decrease in the band at 898 cm−1 (β-glucosides in
cellulose) after SE treatments suggested the breakage of β-
1,4 glycosidic bonds in cellulose. Our previous study found
that SE could depolymerize cellulose in the wheat bran to
release glucose, which benefited to the subsequent biological
conversion (25). The disappearance of the band near 1,732
cm−1 (C=O stretching in hemicellulose) and 1,249 cm−1 (C–
O stretching hemicellulose and syringyl ring in lignin) implied
the degradation of hemicelluloses and breakage of lignin and
hemicellulose, which was in line with the results of hemicellulose
content decrease. Slight and continuous increase in the band
near 1,109 cm−1 (C–OH skeletal vibration) and 1,060 cm−1

(C–O deformation vibration in secondary alcohols or aliphatic
ethers) suggested the chemical modification of lignin. Maniet
and coworkers systematically investigated the influences of
SE on lignin structure and revealed that an increase of the
SE intensity induced β-O-4 and spirodienone substructure
degradations, increase in COOH content and phenolic OH
bonds, decrease of aliphatic OH ferulate and p-coumarate bonds,
and changes in subunits proportions within the organosolv
fescue lignin (26). Lignin degradation is an essential step
for its bioconversion. Therefore, the SE treated lignin might
be suitable for biological valorization for producing value-
added products (e.g., lipids and polyhydroxyalkanoates). As
the degradation of hemicellulose and lignin was observed,
the inhibiting compounds should be generated during the
SE treatment. Fortunately, these inhibitors can be removed
effectively by facile detoxification methods (e.g., water-washing
and drying). Li and Chen reported that water-washing removed
81% of the furfural and 85% of the phenol compounds from SE
treated corn straw and hot air-drying can obtained 46% of the
furfural removal and 8.1% of the phenol compounds removal,
respectively (27). In the present study, the PTN samples were
washed in a water bath with a solid-liquid ratio of 1:10 (w/v)
at room temperature for 30min and then oven-dried at 63◦C
to a constant weight to eliminate the influence of the inhibiting
compounds on the following biological valorization processes.
Overall, SE removed hemicellulose and broke the linkages of
lignin, which mitigated the recalcitrance of the TN biomass
to cellulases.

Physical properties of raw and pretreated
tiger nut

Cellulose consists of crystalline and amorphous component.
Additionally, the lignin and hemicellulose were deemed
as amorphous components. XRD patterns depicted typical
cellulose Iβ allomorphs in the samples regardless of SE

FIGURE 3

Physical properties of TN before and after SE pretreatment. Bars

followed by the di�erent superscripts (a–e) show significant

di�erence (p < 0.05) according to the Duncan’s multiple range

test.

pretreatments. The CrI of UTN (54.15%) was lower than that
of PTN samples which ranged from 58.25 to 61.33% (Figure 3).
This result revealed the disintegration of the amorphous
components (e.g., hemicellulose, lignin, and extractives) by the
SE treatments. Ying et al. also found that the degradation of
hemicellulose in poplar by an acetic acid hydrolysis pretreatment
resulted in an increase of the CrI value, which is in accordance
with the present work (28). No significant increase in CrI
of PTN was observed as the SF increased from 3.29 to
4.19. This indicated that the crystalline component became
correspondingly more exposed despite of little disruption of
hydrogen bonds within cellulose, which was responsible for the
cellulase adsorption. Cellulose accessibility (CA) correlating to
the adsorption behavior of cellulase directly impacts the sugar
release. CA increased from 253.53 in UTN to 488.10 of PTN
(SF = 4.19) as the severity of SE pretreatment increased, which
can be primarily attributed to that the SE allows hemicelluloses
solubilization and opens the lignocellulosic structure (26, 29).
Thus, SE pretreatment enhanced the accessibility of the cellulose,
which could subsequently promote the enzymatic digestibility.
An obvious decrease of degree of polymerization (DP) was
observed, in detail, the DP decreased from 839.85 (UTN) to
186.08 (SF = 4.19), which represented a 77.84% reduction
of cellulose DP. This result suggested the breakage of inner
linkages within cellulose chains during the SE process. This
was aligned with the above hypothesis that SE could not only
degrade the amorphous component but also destroyed basic
bonds in cellulose, which resulted in the depolymerization
and exposure of the cellulose (30). Huang and coworkers
also reported a decrease of cotton stalk cellulose DP by
50–65% after SE (SF = 4.22). Furthermore, they found
that the reduction of DP was one of the main factors
enhancing the enzymatic hydrolysis (31). Overall, these physical
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FIGURE 4

Photos (top) and CLSM images of TN before and after SE pretreatment. Red was cellulose labeled with Congo. Scale bar = 100µm.

parameter changes of TN suggested that more accessible
substrates for enzymatic hydrolysis were presented by the
SE pretreatment.

Morphological properties of raw and
pretreated tiger nut

Morphological alterations of TN during the SE
pretreatments were observed using the CLSM imaging
techniques. Visual observation suggested that the PTN samples
were darker compared to UTN and slightly agglomerated
but readily divided (Figure 4). Also, the UTN had rigid
and smooth fibers, whereas the PTN looked porous, rough,
irregular, and defibrillated. Color variation is a primary
indicator of chemical variations in the lignocellulosic
biomass. Similar results were also obtained from the
SO2-catalyzed steam treated softwood pellets (32). The
enhanced darkness was associated with surface burning
and dissolution of extractives, lignin, and hemicellulose,
which resulted in the destruction in mechanical strength and
dimensional stability, providing readily degraded substrates for
enzymes (33).

Based on the microscopic inspection, it was found that SE
pretreatment destroyed the rigid structure and dislocated the
cell wall. Specially, dramatic structure changes were observed
after SE pretreatment with a higher severity. In detail, during
the high temperature cooking stage of the SE, the high
temperature steam softened the TN biomass matrix structure.

Meanwhile, hemicellulose was hydrolyzed by acetic acid derived
from acetyl groups and/or other acids. Some inner linkages
of lignin were destroyed and cellulose binding was reduced
(34). During the subsequent instantaneous decompression stage,
the structure of TN substrates was destroyed by the combined
effects of water flashing and volume expansion. Furthermore,
the TN biomass materials knocked against the inner-wall
of the instrument and collided each other, resulting in a
destroyed matrix structure of the biomass (30). As shown in
Figure 4, when SF reached 4.15 or larger, the TN matrix was
disrupted significantly. Therefore, SE treatment reduced the
recalcitrance and presented a easily accessible TN substrate for
the enzyme attack.

Furthermore, The CLSM images showed that almost no
Congo Red was absorbed by the UTN. This phenomenon
demonstrated that the cellulose was difficult to access in the
raw TN materials, which also confirmed the recalcitrance in
the natural plants (35). With the SF increase, it is interesting
to note that the signal intensity of Congo Red became
stronger. This result suggested that more cellulose were
exposed as the SE severity increased. Accordingly, the
cellulose could be more accessible by the cellulase, which
was in line with the result that CA increased with the SF
increase. The CLSM imaging techniques provided a more
visible observation and easy understanding regarding the
cellulose expose by the SE treatments (36). Therefore, SE
pretreatment destructed the rigid structure and exposed
cellulose in TN materials, which could facilitate the
subsequent saccharification.
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FIGURE 5

Cellulose enzymatic hydrolysis performance of TN before and

after SE pretreatment. Bars followed by the di�erent superscripts

show significant di�erence (p < 0.05) according to the Duncan’s

multiple range test.

Enzymatic digestibility performance of
raw and pretreated tiger nut

Cellulase was added to the TN substrates regardless of SE
pretreatments to release fermentable sugars that can be further
used for biofuels production. Previous study reported that a
cellulase loading of 20 FPU/g was beneficial to the enzymatic
hydrolysis (37). To investigate the effects of SE pretreatment
on saccharification of TN biomass, enzymatic hydrolysis was
conducted for 48 h with an enzyme loading of 20 FPU/g. As
shown in Figure 5, the cellulose conversion of UTN was merely
15.39%. With the SF increased during the SE pretreatment, the
cellulose conversion of PTN ranged from 38.18 to 63.97%, which
was 2.5–4.2 times larger than that of the UTN. These results
implied that SE significantly improved the cellulose conversion
efficiency. Interestingly, the difference of cellulose conversion
between PTN with SF of 3.89 (1.5 MPa, 10min) and PTN with
SF of 4.15 (1.8 MPa, 10min) was not significant. Whereas,
the cellulose conversion of PTN with SF of 4.19 (1.5 MPa,
20min) reached 63.97%. These results suggested that the longer
boiling time presented more significant impact on enzymatic
digestibility than the higher boiling temperature during the
SE process. Overall, SE broke the linkages of hemicellulose
and lignin and increased the cellulose content within the solid
TN substrates. Meanwhile, SE disrupted inner linkages within
cellulose chains, reducing the degree of polymerization. As a
result, cellulose after SE treatment was more easily accessible
by the enzymes (38). Also, the smaller cellulose molecules were
more readily degraded, resulting in a significantly improved
saccharification efficiency. Enzymatic hydrolysis of cellulose to
release fermentable sugars is a prerequisite determining the
bioethanol production. Enzymatic digestibility is a significant

indicator to evaluate the biorefinery performance of plant
materials. For example, Liu et al. examined the enzyme
digestibility of corn stover with different particle size to choose
the optimal particle size for corn stover biomass utilization.
It was found that the utilization of larger biomass particles
was desirable for biofuels production and reduced process cost
(39). In the present study, the enhanced enzymatic digestibility
performance of the steam explosion treated TN demonstrated
great potential for the value-added utilization of TN for a
biorefinery scenario.

Conclusion

TN grows well in well-drained sandy or loamy soils. The
overground tubers of TN represent promising resources for
biorefineries. By applying a steam explosion pretreatment,
physical-chemical properties of the overground tubers of
TN was significantly improved for facilitating the enzymatic
hydrolysis to release fermentable sugars. In particular, SE
increased cellulose content through removing the hemicellulose
from the solid biomass. Moreover, SE reduced the degree
of polymerization and improved the accessibility of cellulose,
which benefited to the enzymatic adsorption and digestibility.
The saccharification efficiency of the TN substrates was
significantly enhanced by the SE pretreatment. Therefore, SE
is an effective method for promoting the valorization of TN
biomass toward a sustainable bioenergy production.
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