15 research outputs found

    Drag on particles in a nematic suspension by a moving nematic-isotropic interface

    Get PDF
    We report the first clear demonstration of drag on colloidal particles by a moving nematic-isotropic interface. The balance of forces explains our observation of periodic, strip-like structures that are produced by the movement of these particles

    Colloidal micromotor in smectic A liquid crystal driven by DC electric field †

    No full text
    Converting linear stimulus to rotation has endless examples in virtually all scales of the universe. One of the interesting examples is Quincke rotation, a spinning rotation of a dielectric sphere neutrally buoyant in an isotropic fluid caused by a unidirectional DC electric field. Recently Quincke rotation has been reported in liquid crystalline (LC) phases, and it was noted that spinning triggers a translational motion normal to the electric field and the rotation axis. In this work, we explain the translation of spinning spheres as a result of hydrodynamic interaction with the bounding walls. We also describe a unique orbiting motion: the spinning particles circumnavigate air inclusions in the liquid crystal. The effect is caused by an elastic entrapment of the spheres at tilted grain boundaries in the meniscus region in the smectic phase. This phenomenon can offer new types of microfluidic devices and micromotors
    corecore