123 research outputs found

    Hydrostatic Pressure and Built-In Electric Field Effects on the Donor Impurity States in Cylindrical Wurtzite GaN/Al x

    Get PDF
    Within the framework of the effective mass approximation, the ground-state binding energy of a hydrogenic impurity is investigated in cylindrical wurtzite GaN/AlxGa1-xN strained quantum ring (QR) by means of a variational approach, considering the influence of the applied hydrostatic pressure along the QR growth direction and the strong built-in electric field (BEF) due to the piezoelectricity and spontaneous polarization. Numerical results show that the donor binding energy for a central impurity increases inchmeal firstly as the QR radial thickness (ΔR) decreases gradually and then begins to drop quickly. In addition, the donor binding energy is an increasing (a decreasing) function of the inner radius (height). It is also found that the donor binding energy increases almost linearly with the increment of the applied hydrostatic pressure. Moreover, we also found that impurity positions have an important influence on the donor binding energy. The physical reasons have been analyzed in detail

    Transcriptome and functional analysis revealed the intervention of brassinosteroid in regulation of cold induced early flowering in tobacco

    Get PDF
    Cold environmental conditions may often lead to the early flowering of plants, and the mechanism by cold-induced flowering remains poorly understood. Microscopy analysis in this study demonstrated that cold conditioning led to early flower bud differentiation in two tobacco strains and an Agilent Tobacco Gene Expression microarray was adapted for transcriptomic analysis on the stem tips of cold treated tobacco to gain insight into the molecular process underlying flowering in tobacco. The transcriptomic analysis showed that cold treatment of two flue-cured tobacco varieties (Xingyan 1 and YunYan 85) yielded 4176 and 5773 genes that were differentially expressed, respectively, with 2623 being commonly detected. Functional distribution revealed that the differentially expressed genes (DEGs) were mainly enriched in protein metabolism, RNA, stress, transport, and secondary metabolism. Genes involved in secondary metabolism, cell wall, and redox were nearly all up-regulated in response to the cold conditioning. Further analysis demonstrated that the central genes related to brassinosteroid biosynthetic pathway, circadian system, and flowering pathway were significantly enhanced in the cold treated tobacco. Phytochemical measurement and qRT-PCR revealed an increased accumulation of brassinolide and a decreased expression of the flowering locus c gene. Furthermore, we found that overexpression of NtBRI1 could induce early flowering in tobacco under normal condition. And low-temperature-induced early flowering in NtBRI1 overexpression plants were similar to that of normal condition. Consistently, low-temperature-induced early flowering is partially suppressed in NtBRI1 mutant. Together, the results suggest that cold could induce early flowering of tobacco by activating brassinosteroid signaling

    Preventive Effects of Collagen Peptide from Deer Sinew on Bone Loss in Ovariectomized Rats

    Get PDF
    Deer sinew (DS) has been used traditionally for various illnesses, and the major active constituent is collagen. In this study, we assessed the effects of collagen peptide from DS on bone loss in the ovariectomized rats. Wister female rats were randomly divided into six groups as follows: sham-operated (SHAM), ovariectomized control (OVX), OVX given 1.0 mg/kg/week nylestriol (OVX + N), OVX given 0.4 g/kg/day collagen peptide (OVX + H), OVX given 0.2 g/kg/day collagen peptide (OXV + M), and OVX given 0.1 g/kg/day collagen peptide (OXV + L), respectively. After 13 weeks of treatment, the rats were euthanized, and the effects of collagen peptide on body weight, uterine weight, bone mineral density (BMD), serum biochemical indicators, bone histomorphometry, and bone mechanics were observed. The data showed that BMD and concentration of serum hydroxyproline were significantly increased and the levels of serum calcium, phosphorus, and alkaline phosphatase were decreased. Besides, histomorphometric parameters and mechanical indicators were improved. However, collagen peptide of DS has no effect on estradiol level, body weight, and uterine weight. Therefore, these results suggest that the collagen peptide supplementation may also prevent and treat bone loss

    Field-Scale Spatial Variation of Saline-Sodic Soil and Its Relation with Environmental Factors in Western Songnen Plain of China

    Get PDF
    The objectives of this study were to investigate the degree of spatial variability and variance structure of salinization parameters using classical and geostatistical method in Songnen Plain of China, which is one of largest saline-sodic areas in the World, and to analyze the relationship between salinization parameters, including soil salinity content (SC), electrical conductivity (EC), sodium adsorption ratio (SAR), and pH, and seven environmental factors by Pearson and stepwise regression analysis. The environmental factors were ground elevation, surface ponding time, surface ponding depth, and soil moistures at four layers (0–10 cm, 10–30 cm, 30–60 cm, and 60–100 cm). The results indicated that SC, EC, and SAR showed great variations, whereas pH exhibited low variations. Four salinization parameters showed strongly spatial autocorrelation resulting from the compound impact of structural factors. The empirical semivariograms in the four parameters could be simulated by spherical and exponential models. The spatial distributions of SC, EC, SAR and pH showed similar patterns, with the coexistence of high salinity and sodicity in the areas with high ground elevation. By Pearson analysis, the soil salinization parameters showed a significant positive relationship with ground elevation, but a negative correlation with surface ponding time, surface ponding depth, and soil moistures. Both correlation and stepwise regression analysis showed that ground elevation is the most important environmental factor for spatial variation of soil sanilization. The results from this research can provide some useful information for explaining mechanism of salinization process and utilization of saline-sodic soils in the Western Songnen Plain

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Progress of traditional Chinese medicine and western treatment for elderly advanced lung cancer

    No full text

    Multiframe Track-Before-Detect of Weak Fluctuating Targets in a Complex-Valued RD Plane

    No full text
    The use of track-before-detect (TBD) of weak fluctuating targets is significant in radar systems. Conventional TBD methods may suffer from model mismatch and information waste, and the target fluctuation may not be considered. In this paper, to improve the detection and tracking performance of weak fluctuating targets using complex-valued range-Doppler (RD) data, a multiframe TBD method is proposed in a complex-valued RD plane. The target state evolution in the RD plane is formulated for multiframe accumulation accuracy. Considering the additional phase of raw complex-valued RD measurements, matched filtering based TBD using both amplitude and phase information in the raw RD plane is presented. Five common fluctuation models, i.e., Rayleigh distributed model, x2 distributed model, Log-Normal distributed model, Weibull distributed model, and K distributed model are used to describe the target fluctuation in RD plane. The procedure for multiframe accumulation of fluctuating targets in RD plane is presented in detail. The multiframe accumulated envelope of the fluctuating target in RD plane is derived theoretically, and the computational complexity of the proposed method is also analyzed. Both numerical simulations and real data are used to demonstrate the effectiveness of the proposed method

    A Rapid Method for Detecting Microplastics Based on Fluorescence Lifetime Imaging Technology (FLIM)

    No full text
    With the increasing use and release of plastic products, microplastics have rapidly accumulated in ecological environments. When microplastics enter the food chain, they cause serious harm to organisms and humans. Microplastics pollution has become a growing concern worldwide; however, there is still no standardized method for rapidly and accurately detecting microplastics. In this work, we used fluorescence lifetime imaging technology to detect four kinds of Nile red-stained and unstained microplastics, and the unique phasor fingerprints of different microplastics were obtained by phasor analysis. Tracing the corresponding pixels of the "fingerprint" in the fluorescence lifetime image allowed for the quick and intuitive identification of different microplastics and their location distributions in a mixed sample. In our work, compared with staining the four microplastics with a fluorescent dye, using the phasor "fingerprint library" formed by the autofluorescence lifetimes of the microplastics was more easily distinguished than microplastics in the mixed samples. The feasibility of this method was further tested by adding three single substances-SiO2, chitin and decabromodiphenyl ethane (DBDPE), and surface sediments to simulate interferent in the environment, and the results providing potential applications for the identification and analysis of microplastics in complex environments

    Investigating the Deformation and Failure Mechanism of a Submarine Tunnel with Flexible Joints Subjected to Strike-Slip Faults

    No full text
    Knowledge from historical earthquake events indicates that a submarine tunnel crossing active strike-slip faults is prone to be damaged in an earthquake. Previous studies have demonstrated that the flexible joints are an effective measure for a submarine tunnel crossing a strike-slip fault. The background project of this paper is the second submarine tunnel of Jiaozhou bay. In this work, model tests and numerical simulations are conducted to investigate the deformation and failure mechanism of a submarine tunnel with flexible joints under a strike-slip fault dislocation. The influence of strike-slip faults on a tunnel with flexible joints has been investigated by examining the deformation of rock mass surface, analyzing lining stains, and crack propagation from model tests. Numerical simulations are conducted to study the effects of the design parameters of a tunnel with flexible joints on the mechanical response of the lining. The results showed that the ‘articulated design’ measure can improve the ability of the tunnel to resist the strike-slip faults. In terms of the mechanism of design parameters of a tunnel with flexible joints, this paper finds that increasing the lining thickness, decreasing the lining segment length, and decreasing the tunnel diameter to a reasonable extent could effectively improve the performance of this faulting resistance measure for a tunnel under the strike-slip fault zone dislocation. Compared with the horseshoe tunnel cross-section, the circular tunnel cross-section can improve the ability of the faulting resistance of a tunnel with flexible joints, while the optimal angle of the tunnel crossing the fault zone is 90º. It is concluded that the wider fault zone, smaller flexible joint width, and less stiffness of the flexible joint could make lining safer under a strike-slip fault dislocation. The above research results can serve as a necessary theoretical reference and technical support for the design of reinforcement measures for a submarine tunnel with flexible joints under strike-slip fault dislocation

    A Nondestructive Method of Measuring Zebrafish Adipose Tissue Based on Micro-Computed Tomography (Micro-CT)

    No full text
    Featured Application: The detection of fish body fat distribution and content is key in the study of lipid metabolism. Our study established an imaging technology for the rapid and nondestructive detection of the fat distribution and content of fish by micro-CT.Due to problems such as unbalanced intake of nutrients or excessive intake of energy, cultured fish accumulate fat in places such as the abdominal cavity, liver, and muscle, resulting in fatty liver, reducing the quality of fish meat, and even causing many fish deaths, resulting in losses to aquaculture production. Therefore, research on lipid metabolism in fish is important and has attracted increasing attention. The detection of fish body fat distribution and content is a key to such research. The existing methods for detecting fat distribution and content in fish have limitations, such as cumbersome procedures and damage to fish tissues, and thus, is imperative to develop a simple, fast, nondestructive fat detection technology. Taking zebrafish as the research material, this study established an imaging technology for the rapid and nondestructive detection of the fat distribution and content of fish by micro-computed tomography (micro-CT), optimized the fat CT-scanning method, determined the steps of fat quantitation in the CTAn data processing software, and constructed a three-dimensional (3D) model of zebrafish adipose tissue. This technology reveals the distribution of fish adipose tissue in an all-round way, and thus, it will play an important role in the study of lipid metabolism in fish
    corecore