160 research outputs found

    Root-specific flavones and critical enzyme genes involved in their synthesis changes due to drought stress on Scutellaria baicalensis

    Get PDF
    IntroductionScutellaria baicalensis is rich in bioactive flavonoid, which are widely used in clinical therapy. Many environmental factors, such as water and temperature, affect gene expression and secondary metabolites accumulation in plants.MethodsIn this study, to explore the effect of drought stress on the accumulation of flavonoids and gene expression in S. baicalensis seedlings, 4-week-old Scutellaria baicalensis seedlings were treated with different concentrations of PEG6000 to simulate drought stress. The contents of four root-specific flavones (baicalein, wogonin, baicalin, and wogonoside) in samples under different treatments were quantitatively analyzed by high performance liquid chromatography (HPLC). The expression levels of flavonoid biosynthesis-related genes (PAL1, PAL2, CHS, and UBGAT) were determined by real-time quantitative PCR (qRT-PCR). Also, a correlation analysis between flavonoid contents and gene expression levels was made.ResultsThe HPLC results revealed that 5 and 10% PEG6000 treatments significantly increased the content of four flavonoids, with 5% PEG 6000 treatment being the most beneficial to the flavonoids accumulation. The qRT-PCR results showed that PAL2 and CHS gene expressions differed significantly in different organs, while PAL1 and UBGAT had poor organ-specific. For genes in roots, the expression of PAL1 and UBGAT was the highest in 5% PEG6000 treatment, and PAL2 and CHS were the highest in 10% PEG6000 treatment. Compared with other concentrations of PEG6000, 5 and 10% PEG6000 were more advantageous for gene expression. Collectively, PEG6000 at a low concentration promoted the accumulation of flavonoids and the expression of related genes. Additionally, the correlation results demonstrated that PAL1, PAL2, CHS, and UBGAT genes in roots stimulated the formation and accumulation of the four flavonoids to varying degrees, while the exception of PAL2 gene expression in roots was negatively correlated with wogonin content.DiscussionThis study for the first time investigated the effect of drought stress on the downstream gene UBGAT in S.baicalensis seedlings as well as the correlation between gene expression and flavonoid content in S. baicalensis seedlings under drought stress, providing a new sight for studying the effects of drought stress on flavonoid accumulation and related gene expression in S. baicalensis

    Neuroinflammation Induced by Surgery Does Not Impair the Reference Memory of Young Adult Mice

    Get PDF
    Postoperative cognitive dysfunction (POCD) increases morbidity and mortality after surgery. But the underlying mechanism is not clear yet. While age is now accepted as the top one risk factor for POCD, results from studies investigating postoperative cognitive functions in adults have been controversial, and data about the very young adult individuals are lacking. The present study investigated the spatial reference memory, IL-1 , IL-6, and microglia activation changes in the hippocampus in 2-month-old mice after anesthesia and surgery. We found that hippocampal IL-1 and IL-6 increased at 6 hours after surgery. Microglia were profoundly activated in the hippocampus 6 to 24 hours after surgery. However, no significant behavior changes were found in these mice. These results indicate that although anesthesia and surgery led to neuroinflammation, the latter was insufficient to impair the spatial reference memory of young adult mice

    Whole-genome comparisons of Penicillium spp. reveals secondary metabolic gene clusters and candidate genes associated with fungal aggressiveness during apple fruit decay

    Get PDF
    Blue mold is a postharvest rot of pomaceous fruits caused by Penicillium expansum and a number of other Penicillium species. The genome of the highly aggressive P. expansum strain R19 was re-sequenced and analyzed together with the genome of the less aggressive P. solitum strain RS1. Whole genome scale similarities and differences were examined. A phylogenetic analysis of P. expansum, P. solitum, and several closely related Penicillium species revealed that the two pathogens isolated from decayed apple with blue mold symptoms are not each other’s closest relatives. Among a total of 10,560 and 10,672 protein coding sequences respectively, a comparative genomics analysis revealed 41 genes in P. expansum R19 and 43 genes in P. solitum RS1 that are unique to these two species. These genes may be associated with pome fruit–fungal interactions, subsequent decay processes, and mycotoxin accumulation. An intact patulin gene cluster consisting of 15 biosynthetic genes was identified in the patulin producing P. expansum strain R19, while only a remnant, seven-gene cluster was identified in the patulin-deficient P. solitum strain. However, P. solitum contained a large number of additional secondary metabolite gene clusters, indicating that this species has the potential capacity to produce an array of known as well as not-yet-identified products of possible toxicological or biotechnological interest

    Genome, Functional Gene Annotation, and Nuclear Transformation of the Heterokont Oleaginous Alga \u3ci\u3eNannochloropsis oceanica\u3c/i\u3e CCMP1779

    Get PDF
    Unicellular marine algae have promise for providing sustainable and scalable biofuel feedstocks, although no single species has emerged as a preferred organism. Moreover, adequate molecular and genetic resources prerequisite for the rational engineering of marine algal feedstocks are lacking for most candidate species. Heterokonts of the genus Nannochloropsis naturally have high cellular oil content and are already in use for industrial production of high-value lipid products. First success in applying reverse genetics by targeted gene replacement makes Nannochloropsis oceanica an attractive model to investigate the cell and molecular biology and biochemistry of this fascinating organism group. Here we present the assembly of the 28.7 Mb genome of N. oceanica CCMP1779. RNA sequencing data from nitrogen-replete and nitrogendepleted growth conditions support a total of 11,973 genes, of which in addition to automatic annotation some were manually inspected to predict the biochemical repertoire for this organism. Among others, more than 100 genes putatively related to lipid metabolism, 114 predicted transcription factors, and 109 transcriptional regulators were annotated. Comparison of the N. oceanica CCMP1779 gene repertoire with the recently published N. gaditana genome identified 2,649 genes likely specific to N. oceanica CCMP1779. Many of these N. oceanica–specific genes have putative orthologs in other species or are supported by transcriptional evidence. However, because similarity-based annotations are limited, functions of most of these species-specific genes remain unknown. Aside from the genome sequence and its analysis, protocols for the transformation of N. oceanica CCMP1779 are provided. The availability of genomic and transcriptomic data for Nannochloropsis oceanica CCMP1779, along with efficient transformation protocols, provides a blueprint for future detailed gene functional analysis and genetic engineering of Nannochloropsis species by a growing academic community focused on this genus

    No Banquet Can Do without Liquor: Alcohol counterfeiting in the People’s Republic of China

    Get PDF
    The illegal trade in alcohol has been an empirical manifestation of organised crime with a very long history; yet, the nature of the illegal trade in alcohol has received relatively limited academic attention in recent years despite the fact that it has been linked with significant tax evasion as well as serious health problems and even deaths. The current article focuses on a specific type associated with the illegal trade in alcohol, the counterfeiting of alcohol in China. The article pays particular attention to the counterfeiting of baijiu, Chinese liquor in mainland China. The aim of the article is to offer an account of the social organisation of alcohol counterfeiting business in China by illustrating the counterfeiting process, the actors in the business as well as its possible embeddedness in legal practices and industries/trades. The alcohol counterfeiting business is highly reflective to the market demand and consumer needs. Alcohol counterfeiting in China is characterised primarily by independent actors many of whom are subcontracted to provide commodities and services about the counterfeiting process. The business relies on personal networks – family and extended family members, friends and acquaintances. Relationships between actors in the business are very often based on a customer-supplier relationship or a ‘business-to-business market’. The alcohol counterfeiting business in China highlights the symbiotic relationship between illegal and legal businesses
    • …
    corecore