87 research outputs found

    A Deterministic Equivalent for the Analysis of Non-Gaussian Correlated MIMO Multiple Access Channels

    Full text link
    Large dimensional random matrix theory (RMT) has provided an efficient analytical tool to understand multiple-input multiple-output (MIMO) channels and to aid the design of MIMO wireless communication systems. However, previous studies based on large dimensional RMT rely on the assumption that the transmit correlation matrix is diagonal or the propagation channel matrix is Gaussian. There is an increasing interest in the channels where the transmit correlation matrices are generally nonnegative definite and the channel entries are non-Gaussian. This class of channel models appears in several applications in MIMO multiple access systems, such as small cell networks (SCNs). To address these problems, we use the generalized Lindeberg principle to show that the Stieltjes transforms of this class of random matrices with Gaussian or non-Gaussian independent entries coincide in the large dimensional regime. This result permits to derive the deterministic equivalents (e.g., the Stieltjes transform and the ergodic mutual information) for non-Gaussian MIMO channels from the known results developed for Gaussian MIMO channels, and is of great importance in characterizing the spectral efficiency of SCNs.Comment: This paper is the revision of the original manuscript titled "A Deterministic Equivalent for the Analysis of Small Cell Networks". We have revised the original manuscript and reworked on the organization to improve the presentation as well as readabilit

    A hybrid motion planning framework for autonomous driving in mixed traffic flow

    Get PDF
    As a core part of an autonomous driving system, motion planning plays an important role in safe driving. However, traditional model- and rule-based methods lack the ability to learn interactively with the environment, and learning-based methods still have problems in terms of reliability. To overcome these problems, a hybrid motion planning framework (HMPF) is proposed to improve the performance of motion planning, which is composed of learning-based behavior planning and optimization-based trajectory planning. The behavior planning module adopts a deep reinforcement learning (DRL) algorithm, which can learn from the interaction between the ego vehicle (EV) and other human-driven vehicles (HDVs), and generate behavior decision commands based on environmental perception information. In particular, the intelligent driver model (IDM) calibrated based on real driving data is used to drive HDVs to imitate human driving behavior and interactive response, so as to simulate the bidirectional interaction between EV and HDVs. Meanwhile, trajectory planning module adopts the optimization method based on road Frenet coordinates, which can generate safe and comfortable desired trajectory while reducing the solution dimension of the problem. In addition, trajectory planning also exists as a safety hard constraint of behavior planning to ensure the feasibility of decision instruction. The experimental results demonstrate the effectiveness and feasibility of the proposed HMPF for autonomous driving motion planning in urban mixed traffic flow scenarios

    Ex Situ Reconstruction-Shaped Ir/CoO/Perovskite Heterojunction for Boosted Water Oxidation Reaction

    Get PDF
    The oxygen evolution reaction (OER) is the performance-limiting step in the process of water splitting. In situ electrochemical conditioning could induce surface reconstruction of various OER electrocatalysts, forming reactive sites dynamically but at the expense of fast cation leaching. Therefore, achieving simultaneous improvement in catalytic activity and stability remains a significant challenge. Herein, we used a scalable cation deficiency-driven exsolution approach to ex situ reconstruct a homogeneous-doped cobaltate precursor into an Ir/CoO/perovskite heterojunction (SCI-350), which served as an active and stable OER electrode. The SCI-350 catalyst exhibited a low overpotential of 240 mV at 10 mA cm-2 in 1 M KOH and superior durability in practical electrolysis for over 150 h. The outstanding activity is preliminarily attributed to the exponentially enlarged electrochemical surface area for charge accumulation, increasing from 3.3 to 175.5 mF cm-2. Moreover, density functional theory calculations combined with advanced spectroscopy and 18O isotope-labeling experiments evidenced the tripled oxygen exchange kinetics, strengthened metal-oxygen hybridization, and engaged lattice oxygen oxidation for O-O coupling on SCI-350. This work presents a promising and feasible strategy for constructing highly active oxide OER electrocatalysts without sacrificing durability

    A Unitary ESPRIT Scheme of Joint Angle Estimation for MOTS MIMO Radar

    No full text
    The transmit array of multi-overlapped-transmit-subarray configured bistatic multiple-input multiple-output (MOTS MIMO) radar is partitioned into a number of overlapped subarrays, which is different from the traditional bistatic MIMO radar. In this paper, a new unitary ESPRIT scheme for joint estimation of the direction of departure (DOD) and the direction of arrival (DOA) for MOTS MIMO radar is proposed. In our method, each overlapped-transmit-subarray (OTS) with the identical effective aperture is regarded as a transmit element and the characteristics that the phase delays between the two OTSs is utilized. First, the measurements corresponding to all the OTSs are partitioned into two groups which have a rotational invariance relationship with each other. Then, the properties of centro-Hermitian matrices and real-valued rotational invariance factors are exploited to double the measurement samples and reduce computational complexity. Finally, the close-formed solution of automatically paired DOAs and DODs of targets is derived in a new manner. The proposed scheme provides increased estimation accuracy with the combination of inherent advantages of MOTS MIMO radar with unitary ESPRIT. Simulation results are presented to demonstrate the effectiveness and advantage of the proposed scheme

    Semidefinite Optimization Providing Guaranteed Bounds on Linear Functionals of Solutions of Linear Integral Equations with Smooth Kernels

    No full text
    Based on recent progress on moment problems, semidefinite optimization approach is proposed for estimating upper and lower bounds on linear functionals defined on solutions of linear integral equations with smooth kernels. The approach is also suitable for linear integrodifferential equations with smooth kernels. Firstly, the primal problem with smooth kernel is converted to a series of approximative problems with Taylor polynomials obtained by expanding the smooth kernel. Secondly, two semidefinite programs (SDPs) are constructed for every approximative problem. Thirdly, upper and lower bounds on related functionals are gotten by applying SeDuMi 1.1R3 to solve the two SDPs. Finally, upper and lower bounds series obtained by solving two SDPs, respectively infinitely approach the exact value of discussed functional as approximative order of the smooth kernel increases. Numerical results show that the proposed approach is effective for the discussed problems

    Operational Rule Extraction and Construction Based on Task Scenario Analysis

    No full text
    Changes in the information age have induced the necessity for a more efficient and effective self-decision-making requirement. A method of extracting and constructing naval operations decision-making rules based on scenario analysis is proposed. The template specifications of Event Condition Action (ECA) rules are defined, and a consistency detection method of ECA rules based on SWRL is proposed. The logical relationships and state transitions of the naval operational process is analyzed in detail, and the association of objects, events, and behaviors is realized. Finally, the operation of the proposed methods is illustrated through an example process, showing the method can effectively solve the problems of self-decision-making rule extraction and construction among naval battlefield decision environment, and avoid relying on artificial intelligence, which may have brought some uncertain factors

    Operational Rule Extraction and Construction Based on Task Scenario Analysis

    No full text
    Changes in the information age have induced the necessity for a more efficient and effective self-decision-making requirement. A method of extracting and constructing naval operations decision-making rules based on scenario analysis is proposed. The template specifications of Event Condition Action (ECA) rules are defined, and a consistency detection method of ECA rules based on SWRL is proposed. The logical relationships and state transitions of the naval operational process is analyzed in detail, and the association of objects, events, and behaviors is realized. Finally, the operation of the proposed methods is illustrated through an example process, showing the method can effectively solve the problems of self-decision-making rule extraction and construction among naval battlefield decision environment, and avoid relying on artificial intelligence, which may have brought some uncertain factors

    3D Numerical Modelling of Tailings Dam Breach Run Out Flow over Complex Terrain: A Multidisciplinary Procedure

    No full text
    Tailings dams, as essential mining structures, are being built globally for containing the chief waste stream of the mining industry. Catastrophic tailings dam breaches have occurred frequently over the past decade, causing severe impacts on the environment, economy, and human health. The foreknowledge of the tailings dam breach overland flow is crucial for the risk assessment and emergency response planning in order to prevent or minimize possible losses. Using unmanned aerial vehicles (UAV) photogrammetry and smoothed particle hydrodynamics (SPH) numerical method, this study proposed a multidisciplinary procedure for modelling a hypothetical tailings dam breach run out flow over the downstream complex terrain. A case study on a 97-m-height tailings dam in Shandong Province of China was carried out. The proposed procedure was proven applicable to determine the overland tailings flow. The submerged area and flow velocities suggested that the downstream G2 highway would hardly be threatened and more concerns should be paid on the factory plants and workers deployed between the dam toe and the highway. Additionally, the application of UAV photogrammetry in the mining industry as a supplementary surveying method can be further expanded, especially for the numerous small-scale mining sites. The proposed procedure is then recommended for the safety management of the tailings’ storage facilities globally
    • …
    corecore