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G R A P H I C A L A B S T R A C T
� A motion planning framework is pro-
posed for autonomous driving in mixed
traffic flow.

� The bidirectional interaction is consid-
ered in behavior planning.

� An intelligent driver model calibrated by
real data is used to imitate human drivers.

� An optimization-based trajectory plan-
ning is used to improve safety and
feasibility.
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A B S T R A C T

As a core part of an autonomous driving system, motion planning plays an important role in safe driving.
However, traditional model- and rule-based methods lack the ability to learn interactively with the environment,
and learning-based methods still have problems in terms of reliability. To overcome these problems, a hybrid
motion planning framework (HMPF) is proposed to improve the performance of motion planning, which is
composed of learning-based behavior planning and optimization-based trajectory planning. The behavior plan-
ning module adopts a deep reinforcement learning (DRL) algorithm, which can learn from the interaction be-
tween the ego vehicle (EV) and other human-driven vehicles (HDVs), and generate behavior decision commands
based on environmental perception information. In particular, the intelligent driver model (IDM) calibrated based
on real driving data is used to drive HDVs to imitate human driving behavior and interactive response, so as to
simulate the bidirectional interaction between EV and HDVs. Meanwhile, trajectory planning module adopts the
optimization method based on road Frenet coordinates, which can generate safe and comfortable desired tra-
jectory while reducing the solution dimension of the problem. In addition, trajectory planning also exists as a
safety hard constraint of behavior planning to ensure the feasibility of decision instruction. The experimental
results demonstrate the effectiveness and feasibility of the proposed HMPF for autonomous driving motion
planning in urban mixed traffic flow scenarios.
1. Introduction other frontier subjects, which has great application value for individuals
During the last several decades, autonomous driving has experienced
vigorous development under the common concern of academia and in-
dustry. Autonomous driving is a comprehensive application technology
covering computer science, automatic control, vehicle engineering and
Xiong).
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and society. It can not only improve driving safety and reduce traffic
accidents, but also relieve traffic pressure and improve traffic efficiency
to a certain extent. Most autonomous driving systems are composed of
four subsystems: environmental perception, global planning, motion
planning and motion control. Among them, the environmental
st 2022
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perception module provides the surrounding environment information
such as passable area, road marking line, dynamic and static obstacles,
the global planning mainly provides the reference route to the target
location, the motion control module is responsible for calculating specific
control quantities such as brake, throttle, and steering wheel angle to
drive the autonomous vehicle along the desired trajectory. And the
module of motion planning needs to: 1) consider environmental infor-
mation, global planning information, vehicle kinematic constraint,
static/dynamic obstacles constraint and other possible constraints; 2)
generate a collision-free, smooth, kinematic and dynamic feasible tra-
jectory to reach the goal configuration while ensuring the safety and
comfort of driving; 3) solve the problem within limited runtime and
respond to rapid changes in the surrounding environment in real time
[1–4]. Recently, autonomous vehicles have been preliminarily applied in
relatively simple and closed environments, such as airport shuttles and
sightseeing vehicles. However, if autonomous driving is to be widely
used in daily life, it is inevitable to face the challenges brought by
complex dynamic scenarios. Moreover, it is foreseeable that autonomous
vehicles will coexist with HDVs for a long time in the future. And inter-
action with HDVs is also an important issue for autonomous vehicles. As
the main component of the autonomous driving system, motion planning
needs to have the ability to generate safe and reliable desired trajectory
in the face of the mixed traffic flow.

In the past few decades, many traditional motion planning algorithms
have been studied and widely used, which can be mainly divided into
four categories: graph search based methods, sampling based methods,
interpolation based methods and optimization based methods. Graph
search based planners usually use a fixed number of grids or lattices to
discrete configuration space, and a directed graph for search has been
constructed before the planning [5]. According to the given objective
function, different search strategies are used to search the global optimal
path in the given directed graph [6–8]. This kind of method is very
suitable for the shortest path search between finite nodes or grids, but if
the search space is too large, its efficiency is too slow. And the curvature
of the trajectory generated by this method is usually discontinuous and
not smooth, which is difficult to be used in vehicle tracking. To reduce
the search time, stochastic strategies are adopted to generate sampling
points for approximating the structure of free space in the sample-based
methods [9–11]. It can achieve rapid planning through random searches
in free space, but it is difficult to ensure the optimality of the result, and
the trajectory is also not smooth. Although the interpolation based
method can generate a smoothing trajectory, its optimality is also diffi-
cult to be guarantee [12,13]. Besides, this method is very time consuming
when dealing with dynamic obstacles. Optimization based planners
typically employ high-order curve models or piecewise continuous
curves to approximate system dynamics constraints, then solve nonlinear
programming problems and generate high-quality smooth paths [14–16].
However, this method is still limited in how to deal with the constraints
of obstacles, and the real-time requirements are difficult to guarantee.

In many competitions and projects, these traditional methods can
perform well through specific parameter adjustments and combinations
of different methods for application scenarios. However, with the
continuous development of autonomous driving, the number of scenarios
will increase rapidly. This approach is unrealistic, and motion planning
algorithms need to have the ability to learn from the environment. Under
such circumstances, coupled with the development of computing power,
learning-based motion planning methods are proposed [17]. A novel
motion planning framework is proposed in Ref. [18], which integrates
imitation learning (IL) with traditional sampling-based motion planning
algorithms. It adopts IL to learn the driving trajectories of human drivers,
so as to achieve the purpose of improving sampling efficiency. The
experimental results demonstrate the effectiveness of the method, but the
interaction between the ego vehicle and surrounding vehicles is not
considered in this framework. A human-like decision making system is
proposed to make decision in driving scenes like human drivers [24]. The
system uses a convolutional neural network (CNN) model as the
2

perception subsystem to get all the information of the input road scene.
Then the specific control commands is generated by the system based on
the information obtained from the CNN model. The method can mimic
the behavior of human drivers, which can better adapt autonomous ve-
hicles to real traffic scenarios, but it relies heavily on training datasets.
Chen et al. [25] propose a new paradigm for vision-based autonomous
driving system. A model based CNN is built to realize the mapping from
the input image to a small number of key perception indicators, then a
simple motion controller is adopted to control the vehicle to drive
autonomously. Simulations in virtual and real scenes show that the new
method can perform well. But such methods are likely to make unpre-
dictable decisions when faced with unfamiliar scenarios. Recently,
reinforcement learning (RL) has been widely used in motion planning
due to its advantages in interactive learning [21]. Lu et al. [19] propose a
novel automated overtaking system based on hierarchical reinforcement
learning (HRL). The social preferences of the vehicles being overtaken
are taken into account and extracted using a data-driven approach. The
state transition probabilities of overtaken vehicles with different social
preferences are obtained by statistical method, and then motion planning
and control are carried out based on the probabilities. The test results
show that this method can achieve safe and effective overtaking
behavior, but the state of the overtaken vehicle in this method is
equivalent to fixed and known. Ref. [22] proposes a personalized
behavior learning system (PBLS) based on the RL, which can realize
human-like longitudinal speed control through the learning from human
drivers. And the system can achieve higher driving comfort and
smoothness than the traditional cruise control system. However, unstable
drivers may lead to high learning errors in system. A decision planning
method based on latent space reinforcement learning is presented in
Ref. [20] for highway on-ramps scenarios. The combination model of the
hidden Markov model and Gaussian mixture regression is used to
construct interpretable states, and the latent space model is used to
reduce the state dimension. And experimental results demonstrate that
the method can achieve merging behavior with a good balance between
safety and efficiency. This method simulates traffic uncertainty by setting
different speeds and positions of surrounding vehicles, but the sur-
rounding vehicles do not have the ability to interact. In the work carried
out by Ref. [23], a new motion planning algorithm composed of tradi-
tional motion control methods and deep reinforcement learning (DRL)
algorithms. The algorithm adopts the Deep Deterministic Policy Gradient
(DDPG) method to train the motion planner given the predefined initial
and end states, and generate a trajectory. In order to guarantee the
feasibility of the trajectory, a classic tracking control method is employed
in the training stage. Although the algorithm can generate a feasible
trajectory whichmeets the demand of motion control, but obstacles is not
considered in this work. Ref. [26] combines DDPG with safety-based
control methods, where DDPG is used to train control commands for
driving along a predefined path without considering other surrounding
vehicles, control methods are used for obstacle avoidance and path
tracking, then combined with different constants and verified in several
simple scenarios. Although these learning-based methods have shown
potential in motion planning, many methods only consider the response
of the ego vehicle (EV) when dealing with the problem of interaction
with surrounding vehicles. Ref. [27] builds an interaction model of sur-
rounding vehicles, but whether the model can reflect the human driver's
response is not considered.

In this work, we proposed a novel hybrid motion planning framework
(HMPF) consisted of behavior planning and trajectory planning, which is
shown in Fig. 1. A deep-reinforcement-learning-based behavior planning
method is proposed to deal with the interaction between the EV and
other human-driven vehicles (HDVs), and generate the discrete behavior
command according to the environmental information, such as lane
keeping and lane changing. Moreover, in order to simulate the bidirec-
tional interaction between vehicles in real traffic environment, the
intelligent driver model (IDM) [28] is employed to drive the HDVs in this
work. And the parameters of IDM are obtained by calibration from the



Fig. 1. Hybrid motion planning framework.

Fig. 2. Data collection platform.
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collected driving data. Trajectory planning adopts an optimization
method based on the frenet coordinate system, which can improve the
solution efficiency through horizontal and vertical decoupling, and can
take driving comfort into consideration. At the same time, the traditional
optimization-based method can also serve as a hard constraint of HMPF
to ensure security.

The main contributions of this paper are as follows:

� We propose a hybrid motion planning framework consisting of
learning-based behavior planning and optimization-based trajectory
planning, which is capable of learning while still maintaining the
safety and reliability of traditional methods;

� For mixed traffic flow scenarios where the EV and HDVs coexist, the
bidirectional interaction between them is considered in the behavior
planning;

� The IDMmodel with parameter calibration based on real driving data
is used to drive HDVs, so that the interaction reaction of HDVs is
closer to that of human drivers.

The rest of this paper is organized as follows. Section 2 shows the
problem formulation and the hybrid motion planning framework. Sec-
tion 3 introduces the experiments and the results for the proposed
method. Finally, conclusions are drawn in Section 4.

2. Material and methods

2.1. Interaction model

Asmentioned in Section 1, many studies only consider the response of
the EV when dealing with the interaction between the EV and HDVs.
Specifically, these studies directly or indirectly assume that the HDVs are
driving in a predetermined manner, or that the EV is able to control the
HDVs. The interaction considered in this work is the bidirectional
interaction between EV and HDVs, and only the longitudinal interaction
of HDVs is considered. The reinforcement learning is employed to build
the interaction model of the EV to react to the driving behavior of HDVs,
and the IDM is adopted to drive the HDVs, it can also respond to the EV's
driving behavior. The IDM model enables HDVs to adjust their speed
according to the driving information of the front vehicle. Particularly,
real driving data is used to calibrate IDM parameters so that the HDVs can
behave more like a human driver.
3

2.1.1. Data collection
We collect the real driving data by BYD Surui, an autonomous plat-

form of Intelligent Vehicle Research Center (IVRC) of Beijing Institute of
Technology (BIT), which is shown as Fig. 2. The data acquisition platform
was equippedwith on-board sensors to collect vehicle and traffic data. An
inertial measurement unit (IMU) and a GPS are used to collect the po-
sition information such as latitude and longitude. The 32-wire liDAR is
mainly responsible for obtaining environmental information and sur-
rounding vehicle information, while the single-wire radar and millimeter
wave radar are used to obtain information of the vehicle ahead. The
camera is mainly used to collect image information. The vehicle speed,
throttle, brake and other information can be obtained through the vehicle
CAN network.

The data acquisition vehicle is driven by a human driver with more
than ten years of driving experience.
2.1.2. Parameters calibration of IDM
IDM is a longitudinal car-following model for the traffic simulation of

urban and freeway environments, which can ensures no accidents and
covers a wide range of scenarios, including cruising in free-traffic sce-
nario, car-following scenario, stopping scenario. The definition is as
follows:

_x ¼ dx
dt

¼ v (1)
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IDM has six parameters, as shown in Table 1, where v0 presents the
desired velocity that the vehicle can achieve under the conditions
permitted by the traffic environment and regulations. s0 presents the
minimum desired distance when the vehicle can not move ahead. T is the
desired time headway, which is the minimum time to the vehicle in front.
a is the maximum vehicle acceleration. b is the comfortable braking
deceleration, which is a positive number. And exponent δ is usually set to
4 [29]. Therefore, five parameters need to be calibrated, which can be
represented by P(v0, s0, T, a, b).
Table 1
IDM parameters.

Notation Name (units)

v0 Desired maximum velocity (m⋅s�1)
s0 Desired minimum distance (m)
T Desired time headway (s)
a Maximum vehicle acceleration (m⋅s

�2)

b Comfortable braking deceleratioin (m⋅s�2)
δ Exponent
In this work, the nonlinear optimization [30] is used to get the optimal
model parameters P*ðv*0; s*0; T*; a*; b*Þ. Define a finite numerical update
time Δt, and the IDM simulation process can be described by Eqs. (4)-(7),

vidmðt þ ΔtÞ ¼ vidmðtÞ þ _vidmðtÞΔt (4)

xidmðt þ ΔtÞ ¼ xidmðtÞ þ vidmðtÞΔt þ 1
2
_vidmðtÞΔt2 (5)
Table 2
Calibration error.

Notation MAE MRE RMSE Units

Velocity 0.051,7 0.000,8 0.068,8 –

Relative distance 0.019,6 0.000,8 0.022,9 –
sidmðt þ ΔtÞ ¼ xleaddataðt þ ΔtÞ � xidmðt þ ΔtÞ � Llead (6)
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and the initialization is as follows:

vidmðt ¼ 0Þ ¼ vdatað0Þ (8)
Fig. 3. The results of calibra
4

sidmðt ¼ 0Þ ¼ sdatað0Þ (9)

where vidm and xidm are the velocity and position obtained by IDM simu-
lation, xleaddata and vleaddata are the position and velocity of the leading vehicle in
the collected data, Llead is its length. And sdata represents the relative dis-
tance between the leading and following vehicles in the data. The devia-
tion between simulation and ground truth is formulated as Eq. (10).

Ds ¼ jsidm � sdataj;Dv ¼ jvidm � vdataj (10)

In this work, relative distance deviation Ds is optimized, and the
objective function is shown as follows:

minimize J ¼:
1
Te

Z Te

0
DsðτÞ2dðτÞ

s:t: 0:1 � a � 5;

0:1 � b � 5;

0:1 � s0 � 10;

0:1 � T � 5;

1 � v0 � 30;

(11)

The result of calibration is shown in Fig. 3 and Table 2. As shown in
Fig. 3(a), the green curve represents the speed profile of the following
vehicle simulated by IDM, the red curve is the speed profile of the real
following vehicle in collected data, and Fig. 3(b) represents the deviation
between simulated speed and real speed. Fig. 3(c) and (d) show the devia-
tion between the simulated relative distance of leading and following ve-
hicles obtained by calibrated IDM and the ground truth. The results show
that the calibrated IDMmodel can simulate the driving behavior of human
drivers well, and can be used to drive the surrounding vehicles in the
simulation environment to simulate the interaction between HDVs and EV.

2.2. Behavior planning

Behavior planning, also known as behavioral decision making in many
relevant studies, is mainly responsible for generating discrete driving
behavior commands based on the behavior of other traffic participants,
tion for IDM parameters.
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road conditions and environment information. For example, when the EV
finds that the vehicle in front of the lane is slow and there is no vehicle in
the adjacent lane, the behavior planning layer will order the autonomous
vehicle to change lanes. The method of finite state machines is adopted for
behavior planning by most teams in the DARPA Urban Challenge [31], but
it is difficult to cover all scenarios with such a rules-based approach. In this
work, a DRL-based method is employed for behavior planning.

2.2.1. Reinforcement learning
Reinforcement learning is a learning method in which an agent

maximizes the reward signal while implementing a state-to-action
mapping [32]. The basic idea of RL is to obtain strategies that can
Fig. 4. State space.

Fig. 5. Train result.
generate optimal action sequences in the process of continuous interac-
tion between the agent and the environment. Unlike other learning
methods such as imitation learning, the training data in reinforcement
learning is obtained in the process of continuous interaction between the
agent and the environment, rather than obtaining a large amount of data
before starting training. RL problems are usually modeled as Markov
decision processes (MDP), represented by tuple (S, A, R, P, γ). Among
them, S is the state space, which represents the state set describing the
dynamic environment; A is the action space, which represents all avail-
able actions that the agent can choose; R is the reward matrix, which
represents the reward obtained by the agent through taking a certain
action; P(s0|s, a) is the state transition probability matrix, which describes
the transition between states; γ 2 [0, 1] is the discount factor, which is
used to control the importance relationship between future rewards and
immediate rewards. The overall goal of the agent is to determine the
optimal strategy π* by maximizing the expected cumulative reward, so as
to choose the optimal action with the highest expected cumulative
reward in each state, as shown in the following formula:

π* ¼ arg max
π

E

"X∞
t¼0

γtRðSt ;AtÞ
#

(12)

A. State space

The state space is used to describe the state of the agent and the
external environment at any time, which not only needs to grasp the key
characteristics of the specific problem objectively and accurately, but
also needs to meet certain generalization requirements. During behavior
planning, autonomous vehicles need to consider the driving state of
themselves and other vehicles around them, so as to make correct deci-
sion instructions. In this work, the state space of RL agent is the state of
ego vehicle and surrounding vehicles. As shown in Fig. 4, the sur-
rounding vehicles are the front vehicle, rear vehicle, left front vehicle,
left rear vehicle, right front vehicle and right rear vehicle. And the state
information includes the vehicle's position and velocity over the past five
moments, which is defined by Eq. (13), where Itego represents the state
information of the EV, Itfv represents the information of the front vehicle,
Itrv represents the information of the rear vehicle, Itlfv represents the in-
formation of the left front vehicle, Itlrv represents the information of the
left rear vehicle, Itrfv represents the information of the right front vehicle,
Itrrv represents the information of the right rear vehicle.

S ¼
n
Itego; I

t
fv; I

t
rv; I

t
lfv; I

t
lrv; I

t
rfv; I

t
rrv

o
(13)
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B. Action space
The RL-based behavior planning agent plays the role of decision
making in HMPF, and it is mainly responsible for generating discrete
behavior commands based on environmental information. Analogous to
the basic driving behavior of a human driver, the action space is defined
as follows:

A ¼ fCL;LK;CRg (14)

where CL represents the behavior of changing lane to the left, LK is lane
keeping, and CR represents the behavior of changing lane to the right.
C. Reward

Generating a collision-free desired trajectory is critical for motion
planning, and efficiency is also a very important factor. The reward is
defined by Eq. (15), where the Rcol represents the collision penalty (set as
�10), Rlc is the lane change reward (set as 5). Reff is the efficiency reward,
Kv is a constant coefficient, Rv is the velocity of EV, Rsta is a constant
penalty value used to prevent vehicles from standing still. And Rtp is the
reward from trajectory planning (TP), which will be a negative value
when the desired trajectory corresponding to the current action cannot
be generated.

R ¼ Rcol þ Rlc þ Reff þ Rtp (15)

Reff ¼ KvRv þ Rsta (16)

Rtp ¼
��10 if TP no solution
0 else

(17)

D. Training process

At the beginning of each episode, EV will start from any position, and
5–10 HDVs driven by IDM will be randomly placed. The behavior plan-
ning module will generate an action according to the observed state in-
formation, and the trajectory planning module will try to map the action
to the desired trajectory according to the vehicle state and environmental
information. The result of trajectory planning will be fed back to the
behavior planning module as part of the action reward. The train result is
shown in Fig. 5.



Fig. 7. The result of lateral planning.
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2.3. Trajectory planning

In the autonomous driving system, trajectory planning is responsible
for generating the driving trajectory of the vehicle in the future, and the
quality of the trajectory is directly related to the driving safety and sta-
bility of the vehicle. In this work, a frenet-based trajectory planning is
adopted to generate desired trajectory according to the environment
information and action command from behavior planning. Meanwhile,
the result of trajectory planning will also be used as feedback to evaluate
the feasibility of the behavior planning action command.

2.3.1. Frenet coordinate system
For driving in urban environment, human drivers usually take lane

centerline or road boundary as reference to plan future driving path. This
kind of street-related reference system is usually called Frenet coordinate
system, which is shown in Fig. 6. And trajectory planning based on Frenet
coordinate system is more conducive to generate the desired trajectory of
autonomous vehicles with human-like driving behaviors [33]. As shown
in Fig. 6, the lateral offset to the reference path (black dotted curve) is
denoted by d(t), the longitudinal covered arc length from the frame's root
point so is denoted by s(t). The point E on the trajectory of the vehicle
should be expressed as E ¼ (s, d) in the Frenet coordinate system. The
motion of the vehicle is decomposed into two spaces, longitudinal s(t)
and lateral d(t), which is easier to solve.

In trajectory planning, polynomial curves are often used to describe
trajectory, including cubic polynomial, quintic polynomial and seventh
degree polynomial. However, the cubic polynomial can not guarantee the
continuity of acceleration, while the seventh polynomial may have the
uncertainty of solving time, so the quintic polynomial is usually used to
solve the trajectory planning. A quintic polynomial is shown as Eq. (18).

f ðtÞ ¼ p0 þ p1t þ p2t2 þ p3t3 þ p4t4 þ p5t5 (18)

Given the initial state FI and the goal state FG, where

FI ¼
h
f ðtiÞ; _f ðtiÞ; €f ðtiÞ

i
FG ¼

h
f
�
tg
�
; _f
�
tg
�
; €f
�
tg
�i (19)

The polynomial equation can be described as Eq. (20),

f ðtiÞ ¼ p0 þ p1ti þ p2t2i þ p3t3i þ p4t4i þ p5t5i
_f ðtiÞ ¼ p1 þ 2p2ti þ 3p3t2i þ 4p4t3i þ 5p5t4i
€f ðtiÞ ¼ 2p2 þ 6p3ti þ 12p4t2i þ 20p5t3i

f
�
tg
� ¼ p0 þ p1tg þ p2t2g þ p3t3g þ p4t4g þ p5t5g

_f
�
tg
� ¼ p1 þ 2p2tg þ 3p3t2g þ 4p4t3g þ 5p5t4g

€f
�
tg
� ¼ 2p2 þ 6p3tg þ 12p4t2g þ 20p5t3g

(20)
Fig. 6. Vehicle trajectory representation in the Frenet coordinate.
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which can also be expressed in Eq. (21).

2
6666666666664

1 ti t2i t3i t4i t5i
0 1 2ti 3t2i 4t3i 5t4i
0 0 2 6ti 12t2i 20t3i
1 tg t2g t3g t4g t5g
0 1 2tg 3t2g 4t3g 5t4g
0 0 2 6tg 12t2g 20t3g

3
7777777777775

2
6666664

p0
p1
p2
p3
p4
p5

3
7777775
¼ TP ¼ ½FI FG �T (21)

The parameters of Eq. (18) can be solved by Eq. (22).

P ¼ T�1½FI FG �T (22)

Moreover, in order to ensure the comfort of the trajectory, the method
of minimizing jerk is adopted for objective optimization [33,34], as
shown in Eq. (23).

Jðf ðtÞ Þ :¼
Z tg

ti

f ðτÞ2
:::

dðτÞ (23)

2.3.2. Lateral trajectory

For lateral planning, given the initial state DI ¼
�
dðtiÞ; _dðtiÞ; €dðtiÞ

	
and

the goal state DG ¼ �dðtgÞ; _dðtgÞ; €dðtgÞ
	
, the lateral quintic polynomial d(t)

can be solved by Eq. (22), and the lateral cost function CLAT is defined as
Eq. (24), where TD represents the time taken from the initial state to the
goal state, DD represents the deviation between the goal position and the
reference path, KJ, KT and KD are constant coefficients. By adjusting the
goal state DG, the lateral trajectory set can be obtained, which is shown in
Fig. 7.
CLAT ¼ KJJðdðtÞÞ þ KTTD þ KDjDDj (24)

2.3.3. Longitudinal trajectory
For longitudinal trajectory planning, specific driving modes need to

be generated first according to the result of behavior planning. There are
four driving modes in this work, as shown in Eq. (25), and the algorithm
for driving mode generation is shown in Algorithm 1, where the value of
Fstop is determined by a separate judgment module, which will obtain
information such as traffic lights, traffic signs, and route end points in
real time, then judges whether to stop based on this information. For the
surrounding vehicles, we assume that they move at a constant speed in
the planning horizon.

M ¼ fVelocityKeeping;Following;Merging; Stoppingg (25)

For driving modes such as Following,Merging and Stopping that require

a goal position, given the initial state SI ¼
�
sðtiÞ; _sðtiÞ; €sðtiÞ

	
and the goal

state SG ¼ �sðtgÞ; _sðtgÞ; €sðtgÞ
	
, a quintic polynomial s(t) can be obtained by



Fig. 8. The result of longitudinal planning.
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Eq. (22), and the longitudinal cost function CLON is shown in Eq. (26). In
this work, the calculation method of the target point is determined by the
driving mode [34]. For the Following mode, sðtgÞ ¼ slv � ðd0 þ k0 _slvÞ,
7

where slv represents the position of the leading vehicle, d0 is the safety
distance, k0 is a constant parameter. For the Merging mode, s(tg) ¼ (sfv þ
srv)/2, among them, sfv and srv represent the positions of the front and
rear vehicles on the target lane, respectively. And for the Stopping mode,
s(tg) ¼ sstop, where sstop can be the position of the stop line. By adjusting
the goal state SG, a set of longitudinal trajectories can be obtained, as
shown in Fig. 8(a)

CLON ¼ KJJðsðtÞÞ þ KTTS þ KDjDSj (26)

It is worth noting that the longitudinal goal position does not need to be
given for the driving mode of VelocityKeeping, and the longitudinal tra-
jectory s(t) can be described by a quartic polynomial, as shown in Eq. (27).

sðtÞ ¼ s0 þ s1t þ s2t2 þ s3t3 þ s4t4 (27)

Given the initial state SI ¼
�
sðtiÞ; _sðtiÞ; €sðtiÞ

	
and the goal state SG ¼� _sðtgÞ; €sðtgÞ

	
, s(t) can be solved by Eq. (28). At this time, the cost function

CLON is defined by Eq. (29). Fig. 8(b) shows the generated longitudinal
trajectories.

sðtiÞ ¼ s0 þ s1ti þ s2t2i þ s3t3i þ s4t4i
_sðtiÞ ¼ s1 þ 2s2ti þ 3s3t2i þ 4s4t3i
€sðtiÞ ¼ 2s2 þ 6s3ti þ 12s4t2i
_s
�
tg
� ¼ s1 þ 2s2tg þ 3s3t2g þ 4s4t3g

€s
�
tg
� ¼ 2s2 þ 6s3tg þ 12s4t2g

(28)

CLOG ¼ KJJðsðtÞÞ þ KTTV þ KDjDV j (29)
2.3.4. Trajectory selection
As mentioned above, collision-free is the first guarantee of trajectory

planning. Therefore, security check is essential for candidate trajectory
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set generated by lateral and longitudinal planning. The friction circle
constraint [35] is a dynamic hard constraint that the trajectory needs to
meet, which can be checked by the acceleration constraint, while the
nonholonomic motion constraint can be checked by the curvature
constraint. At the same time, a two-phase collision checking method [36]
is used to carry out the trajectory collision detection. The final desired
trajectory is selected by comparing the cost values of those trajectories
that pass the safety check, and the cost function is defined by Eq. (30),
where KLAT and KLON are constant coefficients. As shown in Fig. 9, the
blue dot is the EV position, the blue curve is the reference line, and the
rest curves are the set of all candidate trajectories generated. Among
them, the yellow curve represents the trajectory that passes the security
check, and the green curve connected by the dot is the desired trajectory
finally selected.

CT ¼ KLATCLAT þ KLONCLOG (30)
Fig. 9. The result of frenet based trajectory planning.

Fig. 12. Test scenarios of EV.
3. Results and discussion

To ensure the longitudinal interaction capability of HDVs driven by
IDM model, we conduct verification tests in the scenario shown in
Fig. 10. In Fig. 10, the front vehicle is set to drive at a constant speed of 12
m/s, the rear vehicle is driven by the IDM model, and the maximum
speed is set to 20 m/s. Fig. 11 shows the test results, in which the red
curve is the driving information of the rear vehicle, and the green curve is
the driving information of the front vehicle. As shown in the speed profile
in Fig. 11, the rear vehicle driven by the IDM model has the longitudinal
interaction ability to adjust the speed autonomously.
Fig. 10. The test sce

Fig. 11. The test results for long
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The proposed HMPF is tested in three different simulation scenarios,
as shown in Fig. 12. Among them, Fig. 12(a) is the scenario of changing
lane to the left, Fig. 12(b) is the scenario of changing lane to the right,
and Fig. 12(c) is the continuous lane change scenario. Fig. 12(a) and (b)
are typical scenarios with high frequency in daily traffic environment,
while Fig. 12(c) has a higher complexity. These three scenarios can verify
the reliability and adaptability of the HMPF. The algorithm framework is
implemented based on Python, and CARLA [37] simulation software is
used for experimental testing. The running cycle of the algorithm is 10
Hz, which can meet the real-time requirements. In the trajectory plan-
ning, the sampling range of lateral planning is determined by the lane
width and the result of behavior planning. In this work, the lane width is
set to 3.5 m, the sampling range is determined according to the goal lane,
and the sampling interval is 1 m. The sampling range of longitudinal
planning is fixed, and the sampling interval of speed is 1.4 m/s. The time
range is fixed from 1.8 s to 4.8 s, and the sampling interval of time is 0.2 s.

3.1. Testing scenario 1

The testing one is the scenario of changing lane to the left, which is
shown as Fig. 12(a). The EV drives along the right-most lane, and the
road speed limit is 80 km/h. After the vehicle travels from the initial
nario of HDVs.

itudinal interaction of HDVs.



Fig. 13. Changing lane to the left.
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position to the speed limit value, it enters the mode of VelocityKeeping,
and still drives along the right-most lane. When the EV finds that the
speed of the vehicle ahead is very slow and the left lane is occupied by
other vehicles and cannot change lanes, it will slow down and enter the
Following mode. And when the behavior planning generates the com-
mand of CL, and the desired trajectory generated by trajectory planning
is safe and collision-free, the EV performs the CL behavior and enters the
VelocityKeeping mode. Fig. 13(a)-(d) show some moments in the driving
process, in which the green rectangle represents EV, the red rectangle
represents HDVs, the blue dotted line is the desired trajectory generated
by the trajectory planning algorithm, Fig. 13(e) shows the position and
velocity of EV during the whole driving process. And Fig. 13(f) shows the
trajectories of all the vehicles, where the red curve is the trajectory of EV.
Fig. 14. Changing la
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3.2. Testing scenario 2

The testing two is the scenario of changing lane to the right, which is
shown as Fig. 12(b). The EV drives in the left-most lane, and can only
follow the front vehicle in current lane in Followingmode due to the right
front vehicle in the right lane is moving at a slower speed and blocking its
lane change space. When EV passes the right front vehicle, the behavior
planning judges that lane change conditions are available and generates
behavioral decision command CR, then the trajectory planning generates
the optimal desired trajectory for changing lane to the right. As there is
no other vehicles in front of the target lane, the EV enters the Veloc-
ityKeeping mode after reaching the limited speed. The results are shown
in Fig. 14.
ne to the right.



Fig. 15. Continuous lane change.
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3.3. Testing scenario 3

The testing three is the continuous lane change scenario, which is
shown as Fig. 12(c). The EV drives along the right-most lane, and the
road speed limit is 80 km/h. After the vehicle reaches the limited speed,
it enters the mode of VelocityKeeping. At this time, the EV founds that the
speed of the vehicle in front is very slow, and the speed of the left front
vehicle in the left lane is faster than the front vehicle. And the HMPF
makes the behavior of CL and follows the front vehicle in Followingmode.
When it finds that the speed in the left lane is faster, the vehicle changes
lane to the left again and follows the front vehicle. And when the right
lane has the lane changing conditions, the EV completes the behavior of
CR, and enters the VelocityKeeping after reaching the speed limit. The
results are shown in Fig. 15, where Fig. 15(a) and (b) show the first
changing lane to the left, Fig. 15(c) and (d) are the second, and
Fig. 15(e)–(h) show the process of changing lane to the right.

4. Conclusions

This paper introduces a hybrid motion planning framework (HMPF)
consist of learning-based behavior planning and optimization-based
trajectory planning for autonomous vehicles in mixed traffic environ-
ments. This framework enables the motion planning system to have the
learning ability while still having the security and reliability of tradi-
tional methods. Considering the interaction between the EV and HDVs, a
DRL-based behavior planning is used to generate the behavioral com-
mand. Particularly, in order to more realistically simulate the bidirec-
tional interaction between EV and HDVs, the IDM model calibrated with
real vehicle driving data is employed to drive the HDVs, so that HDVs can
make real-time interactive responses to EV's behavior. In addition, the
optimization method based on the frenet coordinate can ensure that the
10
trajectory planning generates a safe and comfortable desired trajectory in
the complex dynamic urban environment. The simulation test results
show that the proposed HMPF is effective and feasible.

In future work, we will consider individual differences of human
drivers, such as driving styles and driving intentions, so as to improve the
performance of the proposed method and generate driving behaviors
more consistent with excellent human drivers.
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