122 research outputs found

    Noise expresses exponential growth under regime switching

    Get PDF
    Consider a given system under regime switching whose solution grows at most polynomially, and suppose that the system is subject to environmental noise in some regimes. Can the regime switching and the environmental noise work together to make the system change signicantly? The answer is yes. In this paper, we will show that the regime switching and the environmental noise will make the original system whose solution grows at most polynomially become a new system whose solution will grow exponentially. In other words, we reveal that the regime switching and the environmental noise will exppress the exponential growth

    Reinforcement Learning for Robot Navigation with Adaptive Forward Simulation Time (AFST) in a Semi-Markov Model

    Full text link
    Deep reinforcement learning (DRL) algorithms have proven effective in robot navigation, especially in unknown environments, by directly mapping perception inputs into robot control commands. However, most existing methods ignore the local minimum problem in navigation and thereby cannot handle complex unknown environments. In this paper, we propose the first DRL-based navigation method modeled by a semi-Markov decision process (SMDP) with continuous action space, named Adaptive Forward Simulation Time (AFST), to overcome this problem. Specifically, we reduce the dimensions of the action space and improve the distributed proximal policy optimization (DPPO) algorithm for the specified SMDP problem by modifying its GAE to better estimate the policy gradient in SMDPs. Experiments in various unknown environments demonstrate the effectiveness of AFST

    Genetic Dissection of Root Angle of Brassica napus in Response to Low Phosphorus

    Get PDF
    Plant root angle determines the vertical and horizontal distribution of roots in the soil layer, which further influences the acquisition of phosphorus (P) in topsoil. Large genetic variability for the lateral root angle (root angle) was observed in a linkage mapping population (BnaTNDH population) and an association panel of Brassica napus whether at a low P (LP) or at an optimal P (OP). At LP, the average root angle of both populations became smaller. Nine quantitative trait loci (QTLs) at LP and three QTLs at OP for the root angle and five QTLs for the relative root angle (RRA) were identified by the linkage mapping analysis in the BnaTNDH population. Genome-wide association studies (GWASs) revealed 11 single-nucleotide polymorphisms (SNPs) significantly associated with the root angle at LP (LPRA). The interval of a QTL for LPRA on A06 (qLPRA-A06c) overlapped with the confidence region of the leading SNP (Bn-A06-p14439400) significantly associated with LPRA. In addition, a QTL cluster on chromosome C01 associated with the root angle and the primary root length (PRL) in the “pouch and wick” high-throughput phenotyping (HTP) system, the root P concentration in the agar system, and the seed yield in the field was identified in the BnaTNDH population at LP. A total of 87 genes on A06 and 192 genes on C01 were identified within the confidence interval, and 14 genes related to auxin asymmetric redistribution and root developmental process were predicted to be candidate genes. The identification and functional analyses of these genes affecting LPRA are of benefit to the cultivar selection with optimal root system architecture (RSA) under P deficiency in Brassica napus

    A Cluster-Based Parallel Face Recognition System

    No full text
    Abstract- The objective of content-based face recognition is to efficiently find and retrieve face images from the database that satisfy the criteria of similarity to the user's query face image. When the database is large and the face image features are complex, the exhaustive search of the database and computation of the face image similarities is not expedient. We use clusters to accelerate the face features matching speed and extend face images storage capacity. In our system, face database is partitioned into small sub-database and they are distributed among the cluster computers like disk RAID0. In this paper, we present a Double Single System Image(Middleware level and Application level) Four Tier Cluster Architecture to provide complete transparency of resource management, scalable performance, and system availability. In addition, Parallel Retrieval Virtual Machine(PRVM) data structure is designed and it improves the maintainability and extensibility of the cluster system. We also propose Multi-process, Multi-thread and Multi-ports(MMM) techniques and synchronized communication mechanism based on TCP/IP Socket to reliably implement parallel retrieval and face recognition between multi-client and multi-server. The experimental results show the cluster face recognition system not only improves the recognition speed, but also extends the data capacity of the system
    • 

    corecore