19 research outputs found

    EVOLUTION OF THE STRATOSPHERIC TEMPERATURE AND CHEMICAL COMPOSITION OVER ONE TITANIAN YEAR

    Get PDF
    Since the Voyager 1 (V1) flyby in 1980, Titans exploration from space and the ground has been ongoing for more than a full revolution of Saturn around the Sun (one Titan year or 29.5 Earth years was completed in May 2010). In this study we search for temporal variations affecting Titans atmospheric thermal and chemical structure within that year. We process Cassini CIRS data taken during the Titan flybys from 2006-2013 and compare them to the 1980 V1IRIS spectra (re-analyzed here). We also consider data from Earth-based and -orbiting observatories (such as from the ISO, re-visited). When we compare the CIRS 2010 and the IRIS data we find limited inter-annual variations, below the 25 or35 levels for the lower and middle, or the high latitudes, respectively. A return to the 1980 stratospheric temperatures and abundances is generally achieved from 50degN to 50degS, indicative of the solar radiation being the dominating energy source at 10 AU, as for the Earth, as predicted by GCM and photochemical models. However, some exceptions exist among the most complex hydrocarbons (C4H2 and C3H4), especially in the North. In the Southern latitudes, since 2012, we see a trend for an increase of several trace gases, possibly indicative of a seasonal atmospheric reversal. At the Northern latitudes we found enhanced abundances around the period of the northern spring equinox in mid-2009 (as in Bampasidis et al. 2012), which subsequently decreased (from 2010-2012) returning to values similar to those found in the V1 epoch a Titanian year before

    Evolution of the Far-infrared Cloud at Titan's South Pole

    Get PDF
    A condensate cloud on Titan identified by its 220 cm (sup -1) far-infrared signature continues to undergo seasonal changes at both the north and south poles. In the north the cloud, which extends from 55 North to the pole, has been gradually decreasing in emission intensity since the beginning of the Cassini mission with a half-life of 3.8 years. The cloud in the south did not appear until 2012 but its intensity has increased rapidly, doubling every year. The shape of the cloud at the South Pole is very different from that in the north. Mapping in December 2013 showed that the condensate emission was confined to a ring with a maximum at 80 South. The ring was centered 4 degrees from Titan's pole. The pattern of emission from stratospheric trace gases like nitriles and complex hydrocarbons (mapped in January 2014) was also offset by 4 degrees, but had a central peak at the pole and a secondary maximum in a ring at about 70 South with a minimum at 80 South. The shape of the gas emissions distribution can be explained by abundances that are high at the atmospheric pole and diminish toward the equator, combined with correspondingly increasing temperatures. We discuss possible causes for the condensate ring. The present rapid build up of the condensate cloud at the South Pole is likely to transition to a gradual decline during 2015-16

    Celebrating One Year of Atmospheric Evolution on Titan Since Voyager with Cassini/CIRS

    Get PDF
    Seven years after Cassini's Saturn orbit insertion, we have in hand almost a complete picture of the stratospheric evolution within a Titanian year by combining Voyager 1 Infrared Radiometer Spectrometer (IRIS) measurements from 1980, Cassini Composite Infrared Spectrometer (CIRS) continuous recordings from 2004 to 2010 and the intervening ground-based and space-borne observations with ISO (Coustenis et al 2003). We have re-analyzed the Voyager l/IRIS data acquired during the 1980 encounter, 30 years (one Titan revolution) before 2010, with the most recent spectroscopic data releases and haze descriptions (Vinatier et al 2010, 2012) by using our radiative transfer code (ART). The re-analysis confirms the Vl/IRIS retrievals by Coustenis and Bezard (1995) and updates the abundances for all molecules and latitudes based on new temperature, haze and spectroscopic parameters. ART was also applied to all available CIRS spectral averages corresponding to more than 70 flybys binned over 10 deg in latitude for both medium (2.5 cm(exp -1) and higher (0.5 cm(exp -1) resolutions and from nadir and limb data both. In these spectra, we search for variations in temperature (following the method in Achterberg et al 2011) and composition at northern (around 50 deg N), equatorial and southern (around 50 deg S) latitudes as the season on Titan progresses and compare them to the new Vl/IRIS, ISO and other ground-based reported composition values (Coustenis et al., 2012, in prep). Other latitudes were examined in previous papers (e.g. Coustenis et al 2010)

    Analysis of Cassini/CIRS limb spectra of Titan acquired during the nominal mission I. Hydrocarbons, nitriles and CO2 vertical mixing ratio profiles

    No full text
    Observations of the Composite InfraRed Spectrometer (CIRS) during the entire nominal Cassini mission (2004-2008) provide us with an accurate global view of composition and temperature in the middle atmosphere of Titan (between 100 and 500 km). We investigated limb spectra acquired at 0.5 cm- 1 resolution at nine different latitudes between 56°S and 80°N, with a better sampling in the northern hemisphere where molecular abundances and temperature present strong latitudinal variations. From this limb data acquired between February 2005 and May 2008, we retrieved the vertical mixing ratio profiles of C2H2, C2H4, C2H6, C3H8, CH3C2H, C4H2, C6H6, HCN, HC3N and CO2. We present here for the first time, the latitudinal variations of the C2H6, C3H8, CO2, C2H4 and C6H6 vertical mixing ratios profiles. Some molecules, such as C2H6 or C3H8 present little variations above their condensation level. The other molecules (except CO2) show a significant enhancement of their mixing ratios poleward of 50°N. C2H4 is the only molecule whose mixing ratio decreases with height at latitudes below 46°N. Regions depleted in C2H2, HCN and C4H2 are observed around 400 km (0.01 mbar) and 55°N. We also inferred a region enriched in CO2 located between 30 and 40°N in the 2-0.7 mbar pressure range. At 80°N, almost all molecules studied here present a local minimum of their mixing ratio profiles near 300 km (∼0.07 mbar), which is in contradiction with Global Circulation Models that predict constant-with-height vertical profiles due to subsidence at the north pole. © 2009 Elsevier Inc. All rights reserved

    Seasonal variations in Titan’s middle atmosphere during the northern spring derived from Cassini/CIRS observations

    Get PDF
    International audienceWe analyzed spectra acquired at the limb of Titan in the 2006–2013 period by the Cassini/Composite Infrared Spectrometer (CIRS) in order to monitor the seasonal evolution of the thermal, gas composition and aerosol spatial distributions. We are primarily interested here in the seasonal changes after the northern spring equinox and interpret our results in term of global circulation seasonal changes. Data cover the 600–1500 cm−1 spectral range at a resolution of 0.5 or 15.5 cm−1 and probe the 150–500 km vertical range with a vertical resolution of about 30 km. Retrievals of the limb spectra acquired at 15.5 cm−1 resolution allowed us to derive eight global maps of temperature, aerosols and C2H2, C2H6 and HCN molecular mixing ratios between July 2009 and May 2013. In order to have a better understanding of the global changes taking place after the northern spring equinox, we analyzed 0.5 cm−1 resolution limb spectra to infer the mixing ratio profiles of 10 molecules for some latitudes. These profiles are compared with CIRS observations performed during the northern winter. Our observations are compatible with the coexistence of two circulation cells upwelling at mid-latitudes and downwelling at both poles from at last January 2010 to at least June 2010. One year later, in June 2011, there are indications that the global circulation had reversed compared to the winter situation, with a single pole-to-pole cell upwelling at the north pole and downwelling at the south pole. Our observations show that in December 2011, this new pole-to-pole cell has settled with a downward velocity of 4.4 mm/s at 450 km above the south pole. Therefore, in about two years after the equinox, the global circulation observed during the northern winter has totally reversed, which is in agreement with the predictions of general circulation models. We observe a sudden unexpected temperature decrease above the south pole in February 2012, which is probably related to the strong enhancement of molecular gas in this region, acting as radiative coolers. In July and November 2012, we observe a detached haze layer located around 320–330 km, which is comparable to the altitude of the detached haze layer observed by the Cassini Imaging Science Subsystem (ISS) in the UV

    Titan Surface Temperatures during the Cassini Mission

    No full text
    By the close of the Cassini mission in 2017 the Composite Infrared Spectrometer had recorded surface brightness temperatures on Titan for 13 yr (almost half a Titan year). We mapped temperatures in latitude from pole to pole in seven time segments from northern mid-winter to northern summer solstice. At the beginning of the mission the warmest temperatures were centered at 13 S where they peaked at 93.9 K. Temperatures fell off by about 4 K toward the north pole and 2 K toward the south pole. As the seasons progressed the warmest temperatures shifted northward, tracking the subsolar point, and at northern summer solstice were centered at 24 N. While moving north the peak temperature decreased by about 1 K, reaching 92.8 K at solstice. At solstice the fall-off toward the north and south poles were 1 K and 3 K, respectively. Thus the temperature range was the same 2 K at the two poles. Our observed surface temperatures agree with recent general circulation model results that take account of methane hydrology and imply that hemispherical differences in Titan's topography may play a role in the north-south asymmetry on Titan

    Temperature and chemical species distributions in the middle atmosphere observed during Titan’s late northern spring to early summer

    No full text
    International audienceWe present a study of the seasonal evolution of Titan’s thermal field and distributions of haze, C2H2, C2H4, C2H6, CH3C2H, C3H8, C4H2, C6H6, HCN, and HC3N from March 2015 (Ls = 66°) to September 2017 (Ls = 93°) (i.e., from the last third of northern spring to early summer). We analyzed thermal emission of Titan’s atmosphere acquired by the Cassini Composite Infrared Spectrometer with limb and nadir geometry to retrieve the stratospheric and mesospheric temperature and mixing ratios pole-to-pole meridional cross sections from 5 mbar to 50 μbar (120–650 km). The southern stratopause varied in a complex way and showed a global temperature increase from 2015 to 2017 at high-southern latitudes. Stratospheric southern polar temperatures, which were observed to be as low as 120 K in early 2015 due to the polar night, showed a 30 K increase (at 0.5 mbar) from March 2015 to May 2017 due to adiabatic heating in the subsiding branch of the global overturning circulation. All photochemical compounds were enriched at the south pole by this subsidence. Polar cross sections of these enhanced species, which are good tracers of the global dynamics, highlighted changes in the structure of the southern polar vortex. These high enhancements combined with the unusually low temperatures (<120 K) of the deep stratosphere resulted in condensation at the south pole between 0.1 and 0.03 mbar (240–280 km) of HCN, HC3N, C6H6 and possibly C4H2 in March 2015 (Ls = 66°). These molecules were observed to condense deeper with increasing distance from the south pole. At high-northern latitudes, stratospheric enrichments remaining from the winter were observed below 300 km between 2015 and May 2017 (Ls = 90°) for all chemical compounds and up to September 2017 (Ls = 93°) for C2H2, C2H4, CH3C2H, C3H8, and C4H2. In September 2017, these local enhancements were less pronounced than earlier for C2H2, C4H2, CH3C2H, HC3N, and HCN, and were no longer observed for C2H6 and C6 H6, which suggests a change in the northern polar dynamics near the summer solstice. These enhancements observed during the entire spring may be due to confinement of this enriched air by a small remaining winter circulation cell that persisted in the low stratosphere up to the northern summer solstice, according to predictions of the Institut Pierre Simon Laplace Titan Global Climate Model (IPSL Titan GCM). In the mesosphere we derived a depleted layer in C2H2, HCN, and C2H6 from the north pole to mid-southern latitudes, while C4H2, C3H4, C2H4, and HC3N seem to have been enriched in the same region. In the deep stratosphere, all molecules except C2H4 were depleted due to their condensation sink located deeper than 5 mbar outside the southern polar vortex. HCN, C4H2, and CH3C2H volume mixing ratio cross section contours showed steep slopes near the mid-latitudes or close to the equator, which can be explained by upwelling air in this region. Upwelling is also supported by the cross section of the C2H4 (the only molecule not condensing among those studied here) volume mixing ratio observed in the northern hemisphere. We derived the zonal wind velocity up to mesospheric levels from the retrieved thermal field. We show that zonal winds were faster and more confined around the south pole in 2015 (Ls = 67−72°) than later. In 2016, the polar zonal wind speed decreased while the fastest winds had migrated toward low-southern latitudes

    Analysis of Cassini/CIRS limb spectra of Titan acquired during the nominal mission II: Aerosol extinction profiles in the 600--1420 cm<SUP>-1</SUP> spectral range

    No full text
    International audienceWe have analyzed the continuum emission of limb spectra acquired by the Cassini/CIRS infrared spectrometer in order to derive information on haze extinction in the 3-0.02 mbar range (&tilde;150-350 km). We focused on the 600-1420 cm -1 spectral range and studied nine different limb observations acquired during the Cassini nominal mission at 55°S, 20°S, 5°N, 30°N, 40°N, 45°N, 55°N, 70°N and 80°N. By means of an inversion algorithm solving the radiative transfer equation, we derived the vertical profiles of haze extinction coefficients from 17 spectral ranges of 20-cm -1 wide at each of the nine latitudes. At a given latitude, all extinction vertical profiles retrieved from various spectral intervals between 600 and 1120 cm -1 display similar vertical slopes implying similar spectral characteristics of the material at all altitudes. We calculated a mean vertical extinction profile for each latitude and derived the ratio of the haze scale height ( Hhaze) to the pressure scale height ( Hgas) as a function of altitude. We inferred Hhaze/ Hgas values varying from 0.8 to 2.4. The aerosol scale height varies with altitude and also with latitude. Overall, the haze extinction does not show strong latitudinal variations but, at 1 mbar, an increase by a factor of 1.5 is observed at the north pole compared to high southern latitudes. The vertical optical depths at 0.5 and 1.7 mbar increase from 55°S to 5°N, remain constant between 5°N and 30°N and display little variation at higher latitudes, except the presence of a slight local maximum at 45°N. The spectral dependence of the haze vertical optical depth is uniform with latitude and displays three main spectral features centered at 630 cm -1, 745 cm -1 and 1390 cm -1, the latter showing a wide tail extending down to &tilde;1000 cm -1. From 600 to 750 cm -1, the optical depth increases by a factor of 3 in contrast with the absorbance of laboratory tholins, which is generally constant. We derived the mass mixing ratio profiles of haze at the nine latitudes. Below the 0.4-mbar level all mass mixing ratio profiles increase with height. Above this pressure level, the profiles at 40°N, 45°N, 55°N, at the edge of the polar vortex, display a decrease-with-height whereas the other profiles increase. The global increase with height of the haze mass mixing ratio suggest a source at high altitudes and a sink at low altitudes. An enrichment of haze is observed at 0.1 mbar around the equator, which could be due to a more efficient photochemistry because of the strongest insolation there or an accumulation of haze due to a balance between sedimentation and upward vertical drag

    Titan Surface Temperatures from Cassini CIRS

    No full text
    Thermal radiation from the surface of Titan reaches space through a spectral window at 19-microns wavelength. After removing the effects of the atmosphere, measurement of this radiance gives the brightness temperature of the surface. The Composite Infrared Spectrometer (CIRS) has made such measurements during the Cassini prime mission. These observations cover a wide range of emission angles, thereby constraining the contributions from atmospheric radiance and opacity. With the more complete latitude coverage and much larger dataset, we have been able to improve upon the original results from Voyager IRIS. CIRS measures an equatorial surface brightness temperature, averaged over longitude, of 93.7 +/- 0.6 K. This agrees with the HASI temperature at the Huygens landing site. The latitude dependence of surface brightness temperature exhibits an approximately 2 K decrease toward the South Pole and 3 K decrease toward the North Pole. The lower surface temperatures seen at high latitudes are consistent with conditions expected for lake formation
    corecore