2,901 research outputs found

    The possible members of the 51S05^1S_0 meson nonet

    Full text link
    The strong decays of the 51S05^1S_0 qqˉq\bar{q} states are evaluated in the 3P0^3P_0 model with two types of space wave functions. Comparing the model expectations with the experimental data for the π(2360)\pi(2360), η(2320)\eta(2320), X(2370)X(2370), and X(2500)X(2500), we suggest that the π(2360)\pi(2360), η(2320)\eta(2320), and X(2500)X(2500) can be assigned as the members of the 51S05^1S_0 meson nonet, while the 51S05^1S_0 assignment for the X(2370)X(2370) is not favored by its width. The 51S05^1S_0 kaon is predicted to have a mass of about 2418 MeV and a width of about 163 MeV or 225 MeV.Comment: 10 pages, 5 figures, version accepted by Eur. Phys. J.

    Efficient Partitioning Method of Large-Scale Public Safety Spatio-Temporal Data based on Information Loss Constraints

    Full text link
    The storage, management, and application of massive spatio-temporal data are widely applied in various practical scenarios, including public safety. However, due to the unique spatio-temporal distribution characteristics of re-al-world data, most existing methods have limitations in terms of the spatio-temporal proximity of data and load balancing in distributed storage. There-fore, this paper proposes an efficient partitioning method of large-scale public safety spatio-temporal data based on information loss constraints (IFL-LSTP). The IFL-LSTP model specifically targets large-scale spatio-temporal point da-ta by combining the spatio-temporal partitioning module (STPM) with the graph partitioning module (GPM). This approach can significantly reduce the scale of data while maintaining the model's accuracy, in order to improve the partitioning efficiency. It can also ensure the load balancing of distributed storage while maintaining spatio-temporal proximity of the data partitioning results. This method provides a new solution for distributed storage of mas-sive spatio-temporal data. The experimental results on multiple real-world da-tasets demonstrate the effectiveness and superiority of IFL-LSTP

    Study on an eco‐design method of industrial solid waste reused products: a case study of mullite produced from fly ash

    Get PDF
    With the increasing growth of solid waste used as raw materials, it is essential to focus on eco-design of the solid waste reused products to reduce environmental impacts and ensure safe use. In this research, an eco-design and evaluation method is established for the industrial solid waste reused products, with the characteristic of the reuse technology and process of industrial solid waste. This method is established based on the existing eco-design method for general products and life cycle assessment, considering the quality problems as well as the environmental risks in heavy metal, remaining acid and alkali and so on in the recycling products. This method is employed in the fly ash reuse process of producing mullite products. The process is optimized and evaluated by the method with the steps of raw material applicability analysis, process control, products application and safety analysis of final disposition. The results indicate that the process design basically accords with the eco-design purpose of industrial solid waste reused products and it is feasible to implement. References [1] M. Ahmaruzzaman. A review on the utilization of fly ash [J]. Progress in Energy and Combustion Science, 2010, 36: 327-363. [2] Jesus Barragan Ferrer, Stéphane Negny, Guillermo Cortes Robles, Jean Marc Le Lann. Eco-innovative design method for process engineering [J]. Computers and Chemical Engineering, 2012, 45: 137-151. [3] E. Sobiecka. Investigating the chemical stabilization of hazardous waste material (fly ash) encapsulated in Portland cement [J]. International journal of Environmental Science and Technology, 2013, 10: 1219-1224. [4] James W. Levis, Morton A. Barlaz, Joseph F. DeCarolis, S. Ranji Ranjithan. A generalized multistage optimization modeling framework for life cycle assessment-based integrated solid waste management [J]. Environmental Modelling & Software, 2013, 50: 51-65

    Analysis on solid waste emission and management in the development of Beijing City

    Get PDF
    Beijing, as a typical large city of China, is experiencing a transformational development that huge change occurs in the industrial structure and the city infrastructure. It will have an impact on the resources consumption and solid waste management of Beijing. Based on the data of city development and resources utilization in 2010-2014, this research analyzes the relationship among the different solid waste types, resources consumption and industry development on the premise of sustainable industrial structure adjustment by the methods of the material flow analysis and scenarios analysis. The results show that: firstly, Beijing city has become a typical city relying on resources consumption, with a slow growth of the waste solid emission. Secondly, construction and demolition waste has become the major solid waste in total amount, while municipal solid waste is still the major solid waste in the central urban. Thirdly, a larger reduction of solid waste landfill would be obtained by adjusting the mode of resources recycle, utilization and disposition. The potential reduction of solid waste landfill is estimated to be above 10 million tons in 2020. References [1] Jinglan Hong, Xiangzhi Li, Cui Zhaojie. Life cycle assessment of four municipal solid waste management scenarios in China [J]. Waste Management, 2010, 30: 2362-2369. [2] Dong QingZhang, Soon Keat Tan, Richard M.Gersberg. Municipal solid waste management in China: Status, problems and challenges [J]. Journal of Environmental Management, 2010, 91: 1623-1633. [3] Yan Zhao, Thomas H. Christensen, Wenjing L, et al. Environmental impact assessment of solid waste management in Beijing City, China [J]. Waste Management, 2011, 31: 793-799. [4] Lilliana Abarca Guerrero, Ger Maas, William Hogland. Solid waste management challenges for cities in developing countries [J]. Waste Management, 2013, 33: 220-231

    Current trends and developments in progressive collapse research on reinforced concrete flat plate structures

    Get PDF
    Progressive collapse of structures caused by extreme or accidental loads may lead to significant loss of life and property. Considerable research efforts have been made to date to mitigate the probability of progressive collapse and its consequences. This study summarises the fundamentals of progressive collapse in relation to the existing theoretical concepts and understanding. Specifically the existing theories pertinent to progressive collapse of building structures, in particular reinforced concrete (RC) flat plates, are examined from the following four key aspects: (1) definition of progressive collapse from deformation and/or strength perspectives with respect to the failure criteria of structural members and the entire structural system; (2) failure mechanisms of load-bearing systems undergoing progressive collapse with respect to the structural ultimate capacity, which has not been considered in the design process; (3) research methodologies for investigating collapse mechanisms, with emphases on experimental and numerical approaches; and (4) collapse-resistant design principles as covered in several international design standards in which a number of robustness requirements have been recognised. Based on the schematic review of the current trends and developments, gaps and limitations in progressive collapse research are identified and a new research direction is established to advance the progressive collapse study of RC flat plate structures

    Classical Activation of Macrophages Leads to Lipid Droplet Formation Without; de novo; Fatty Acid Synthesis

    Get PDF
    Altered lipid metabolism in macrophages is associated with various important inflammatory conditions. Although lipid metabolism is an important target for therapeutic intervention, the metabolic requirement involved in lipid accumulation during pro-inflammatory activation of macrophages remains incompletely characterized. We show here that macrophage activation with IFNγ results in increased aerobic glycolysis, iNOS-dependent inhibition of respiration, and accumulation of triacylglycerol. Surprisingly, metabolite tracing with; 13; C-labeled glucose revealed that the glucose contributed to the glycerol groups in triacylglycerol (TAG), rather than to; de novo; synthesis of fatty acids. This is in stark contrast to the otherwise similar metabolism of cancer cells, and previous results obtained in activated macrophages and dendritic cells. Our results establish a novel metabolic pathway whereby glucose provides glycerol to the headgroup of TAG during classical macrophage activation

    Natural plant polyphenols for alleviating oxidative damage in man: Current status and future perspectives

    Get PDF
    The balance between oxidation and reduction is important for maintaining a healthy biological system. Oxidative stress results from an imbalance between excessive formation of reactive oxygen species (ROS) and/or reactive nitrogen species (RNS) and limited endogenous defense systems, and this imbalance can adversely alter lipids, proteins and DNA, causing a number of human diseases. Thus, exogenous antioxidants that can neutralize the effect of free radicals are needed to diminish the cumulative effects of oxidative damage over human life span. Current research reveals that phenolic compounds in plants possess high antioxidant activity and free radical scavenging capacity and can prevent the body from oxidative damage over human life span. This review focuses on the present understanding of free radicals and antioxidants and their importance in human health and disease. Information about the chemical features of free radicals as well as their deleterious effects on cell structures is reviewed. The chemical structure and anti-oxidative mechanisms of essential polyphenols and their potential health benefits are presented. In addition, the limitation of natural antioxidants and a perspective on likely future trends in this field are also discussed.Keywords: Free radicals, Oxidative stress, Natural antioxidants, Polyphenols, Health benefits, Reactive oxygen species, Reactive nitrogen specie

    Unravelling the fast photocyclisation reaction mechanism(s) of 2-benzoylpyridine in aqueous solvent by time-resolved spectroscopy

    Get PDF
    Monday Poster Session: Time Resolved Raman (MP09) - Poster Number: 154A combined femtosecond transient absorption (fs-TA) and nanosecond time-resolved Resonance Raman (ns-TR3) spectroscopic investigation of the photoreaction of 2-benzoylpyridine in acetonitrile, neutral, basic and acidic aqueous solvents is reported. Some new species generated in the aqueous solvents observed for the first time and characterised by time-resolved vibrational spectroscopy in conjunction with results from DFT calculations. The detailed fast photocyclisation mechanism(s) of 2-benzoylpyridine in aqueous solvents after UV laser photolysis is obtained.postprintThe 22nd International Conference on Raman Spectroscopy (ICORS 2010), Boston, MA., 8-13 August 2010
    corecore