64 research outputs found

    Historical Data Trend Analysis in Extended Reality Education Field

    Get PDF
    The arrival of the digital age brings Virtual Reality, Augmented Reality, and Mixed Reality technologies into our daily life. It provides a brand-new user experience to composite with real environments. Due to the development of related devices in recent years, the highly interactive connections between users and devices have gradually evolved. The paper starts from a literature review to discuss Virtual Reality, Augmented Reality, and Mixed Reality's history and social impact. The review reveals not only the traditional historical review but also contains a data research study. The research focuses on the case study paper, which proposed a bright, interactive future with technology in educational field. We compared the proposed future view and the current development. This paper collected 269 citations from 2005 to 2020 and analyzed them, assessing whether they belonged to technical or theoretical paper. The paper uses the collected data to discuss industrial developing trends and indicates the possible future view based on the data study result

    Virtual Reality Research: Design Virtual Education System for Epidemic (COVID-19) Knowledge to Public

    Get PDF
    open access articleAdvances in information and communication technologies have created a range of new products and services for the well-being of society. Virtual Reality (VR) technology has shown enormous potential in educational, commercial, and medical fields. The recent COVID-19 outbreak highlights a poor global performance in communicating epidemic knowledge to the public. Considering the potential of VR, the research starts from analyzing how to use VR technology to improve public education in COVID-19. The research uses Virtual Storytelling Technology (VST) to promote enthusiasm in user participation. A Plot-based VR education system is proposed in order to provide an immersive, explorative, educational experiences. The system includes three primary modules: the Tutorial Module, the Preparation Module, and the Investigation Module. To remove any potential confusion in the user, the research aims to avoid extremely complicated medical professional content and uses interactive, entertainment methods to improve user participation. In order to evaluate the performance efficiency of the system, we conducted performance evaluations and a user study with 80 participants. Compared with traditional education, the experimental results show that the VR education system can used as an effective educational tool for epidemic (COVID-19) fundamental knowledge. The VR technology can assist government agencies and public organizations to increase public understanding of the spread the epidemic (COVID-19

    An Integrative Pharmacology Model for Decoding the Underlying Therapeutic Mechanisms of Ermiao Powder for Rheumatoid Arthritis

    Get PDF
    As a systemic inflammatory arthritis disease, rheumatoid arthritis (RA) is complex and hereditary. Traditional Chinese medicine (TCM) has evident advantages in treating complex diseases, and a variety of TCM formulas have been reported that have effective treatment on RA. Clinical and pharmacological studies showed that Ermiao Powder, which consists of Phellodendron amurense Rupr. (PAR) and Atractylodes lancea (Thunb.) DC. (ALD), can be used in the treatment of RA. Currently, most studies focus on the anti-inflammatory mechanism of PAR and ALD and are less focused on their coordinated molecular mechanism. In this research, we established an integrative pharmacological strategy to explore the coordinated molecular mechanism of the two herbs of Ermiao Powder in treating RA. To explore the potential coordinated mechanism of PAR and ALD, we firstly developed a novel mathematical model to calculate the contribution score of 126 active components and 85 active components, which contributed 90% of the total contribution scores that were retained to construct the coordinated functional space. Then, the knapsack algorithm was applied to identify the core coordinated functional components from the 85 active components. Finally, we obtained the potential coordinated functional components group (CFCG) with 37 components, including wogonin, paeonol, ethyl caffeate, and magnoflorine. Also, functional enrichment analysis was performed on the targets of CFCG to explore the potential coordinated molecular mechanisms of PAR and ALD. The results indicated that the CFCG could treat RA by coordinated targeting to the genes involved in immunity and inflammation-related signal pathways, such as phosphatidylinositol 3‑kinase/protein kinase B signaling pathway, mitogen-activated protein kinase signaling pathway, tumor necrosis factor signaling pathway, and nuclear factor-kappa B signaling pathway. The docking and in vitro experiments were used to predict the affinity and validate the effect of CFCG and further confirm the reliability of our method. Our integrative pharmacological strategy, including CFCG identification and verification, can provide the methodological references for exploring the coordinated mechanism of TCM in treating complex diseases and contribute to improving our understanding of the coordinated mechanism

    Вихретоковый анизотропный термоэлектрический первичный преобразователь лучистого потока

    Get PDF
    Представлена оригинальная конструкция первичного преобразователя лучистого потока, который может служить основой для создания приемника неселективного излучения с повышенной чувствительностью

    Genome-wide association study of lung adenocarcinoma in East Asia and comparison with a European population

    Get PDF
    Lung adenocarcinoma is the most common type of lung cancer. Known risk variants explain only a small fraction of lung adenocarcinoma heritability. Here, we conducted a two-stage genome-wide association study of lung adenocarcinoma of East Asian ancestry (21,658 cases and 150,676 controls; 54.5% never-smokers) and identified 12 novel susceptibility variants, bringing the total number to 28 at 25 independent loci. Transcriptome-wide association analyses together with colocalization studies using a Taiwanese lung expression quantitative trait loci dataset (n = 115) identified novel candidate genes, including FADS1 at 11q12 and ELF5 at 11p13. In a multi-ancestry meta-analysis of East Asian and European studies, four loci were identified at 2p11, 4q32, 16q23, and 18q12. At the same time, most of our findings in East Asian populations showed no evidence of association in European populations. In our studies drawn from East Asian populations, a polygenic risk score based on the 25 loci had a stronger association in never-smokers vs. individuals with a history of smoking (P interaction  = 0.0058). These findings provide new insights into the etiology of lung adenocarcinoma in individuals from East Asian populations, which could be important in developing translational applications

    Genome-wide association study of lung adenocarcinoma in East Asia and comparison with a European population.

    Get PDF
    Lung adenocarcinoma is the most common type of lung cancer. Known risk variants explain only a small fraction of lung adenocarcinoma heritability. Here, we conducted a two-stage genome-wide association study of lung adenocarcinoma of East Asian ancestry (21,658 cases and 150,676 controls; 54.5% never-smokers) and identified 12 novel susceptibility variants, bringing the total number to 28 at 25 independent loci. Transcriptome-wide association analyses together with colocalization studies using a Taiwanese lung expression quantitative trait loci dataset (n = 115) identified novel candidate genes, including FADS1 at 11q12 and ELF5 at 11p13. In a multi-ancestry meta-analysis of East Asian and European studies, four loci were identified at 2p11, 4q32, 16q23, and 18q12. At the same time, most of our findings in East Asian populations showed no evidence of association in European populations. In our studies drawn from East Asian populations, a polygenic risk score based on the 25 loci had a stronger association in never-smokers vs. individuals with a history of smoking (Pinteraction = 0.0058). These findings provide new insights into the etiology of lung adenocarcinoma in individuals from East Asian populations, which could be important in developing translational applications

    Calculation Method for Phenotypic Traits Based on the 3D Reconstruction of Maize Canopies

    No full text
    A reasonable plant type is an essential factor for improving canopy structure, ensuring a reasonable expansion of the leaf area index and obtaining a high-quality spatial distribution of light. It is of great significance in promoting effective selection of the ecological breeding index and production practices for maize. In this study, a method for calculating the phenotypic traits of the maize canopy in three-dimensional (3D) space was proposed, focusing on the problems existing in traditional measurement methods in maize morphological structure research, such as their complex procedures and relatively large error margins. Specifically, the whole maize plant was first scanned with a FastSCAN hand-held scanner to obtain 3D point cloud data for maize. Subsequently, the raw point clouds were simplified by the grid method, and the effect of noise on the quality of the point clouds in maize canopies was further denoised by bilateral filtering. In the last step, the 3D structure of the maize canopy was reconstructed. In accordance with the 3D reconstruction of the maize canopy, the phenotypic traits of the maize canopy, such as plant height, stem diameter and canopy breadth, were calculated by means of a fitting sphere and a fitting cylinder. Thereafter, multiple regression analysis was carried out, focusing on the calculated data and the actual measured data to verify the accuracy of the calculation method proposed in this study. The corresponding results showed that the calculated values of plant height, stem diameter and plant width based on 3D scanning were highly correlated with the actual measured data, and the determinant coefficients R2 were 0.9807, 0.8907 and 0.9562, respectively. In summary, the method proposed in this study can accurately measure the phenotypic traits of maize. Significantly, these research findings provide technical support for further research on the phenotypic traits of other crops and on variety breeding

    High-Throughput Phenotyping Analysis of Potted Soybean Plants Using Colorized Depth Images Based on A Proximal Platform

    No full text
    Canopy color and structure can strongly reflect plant functions. Color characteristics and plant height as well as canopy breadth are important aspects of the canopy phenotype of soybean plants. High-throughput phenotyping systems with imaging capabilities providing color and depth information can rapidly acquire data of soybean plants, making it possible to quantify and monitor soybean canopy development. The goal of this study was to develop a 3D imaging approach to quantitatively analyze soybean canopy development under natural light conditions. Thus, a Kinect sensor-based high-throughput phenotyping (HTP) platform was developed for soybean plant phenotyping. To calculate color traits accurately, the distortion phenomenon of color images was first registered in accordance with the principle of three primary colors and color constancy. Then, the registered color images were applied to depth images for the reconstruction of the colorized three-dimensional canopy structure. Furthermore, the 3D point cloud of soybean canopies was extracted from the background according to adjusted threshold, and each area of individual potted soybean plants in the depth images was segmented for the calculation of phenotypic traits. Finally, color indices, plant height and canopy breadth were assessed based on 3D point cloud of soybean canopies. The results showed that the maximum error of registration for the R, G, and B bands in the dataset was 1.26%, 1.09%, and 0.75%, respectively. Correlation analysis between the sensors and manual measurements yielded R2 values of 0.99, 0.89, and 0.89 for plant height, canopy breadth in the west-east (W−E) direction, and canopy breadth in the north-south (N−S) direction, and R2 values of 0.82, 0.79, and 0.80 for color indices h, s, and i, respectively. Given these results, the proposed approaches provide new opportunities for the identification of the quantitative traits that control canopy structure in genetic/genomic studies or for soybean yield prediction in breeding programs
    corecore