50 research outputs found

    Sunitinib-induced asthenia: from molecular basis to clinical relief

    Get PDF
    [Abstract] Asthenia-fatigue syndrome (AFS) is defined as a persistent, subjective sense of tiredness related to cancer or its treatment and greatly impacts quality of life among cancer patients. All tyrosine kinase inhibitors, but especially sunitinib, may induce AFS. The reason for sunitinib-induced AFS is not yet well understood. Adverse events caused by sunitinib associated with AFS may include anemia, hypothyroidism, nausea and vomiting. However, AFS is also reported when active treatment with sunitinib is ongoing, and no other relevant adverse event can justify it. The molecular mechanisms by which sunitinib triggers AFS remain elusive. Sunitinib displays multiple off-target tyrosine-kinase interactions and competitively inhibits multiple proteins through the blockade of their ATP-binding sites. The broad spectrum of kinases inhibited may play a key role not only in terms of activity but also in terms of toxicity induced by sunitinib. This study considered different clinical observations and current metabolic and pharmacological knowledge, leading to hypotheses regarding which molecular mechanisms may be involved in sunitinib-induced AFS in cancer patients. Deeper knowledge of the molecular mode of action of sunitinib may lead to improved optimization of its clinical use

    Multiple biomarker tissue arrays: a computational approach to identifying protein-protein interactions in the EGFR/ERK signalling pathway

    Get PDF
    [Abstract] Background. Many studies have demonstrated genetic and environmental factors that lead to renal cell carcinoma (RCC) and that occur during a protracted period of tumourigenesis. It appears suitable to identify and characterise potential molecular markers that appear during tumourigenesis and that might provide rapid and effective possibilities for the early detection of RCC. EGFR activation induces cell cycle progression, inhibition of apoptosis and angiogenesis, promotion of invasion/metastasis, and other tumour promoting activities. Over-expression of EGFR is thought to play an important role in tumour initiation and progression of RCC because up-regulation of EGFR has been associated with high grade cancers and a worse prognosis. Methods. Characterisation of the protein profile interacting with EGFR was performed using the following: an immunohistochemical (IHC) study of EGFR, a comprehensive computational study of EGFR protein-protein interactions, an analysis correlating the expression levels of EGFR with other significant markers in the tumourigenicity of RCC, and finally, an analysis of the utility of EGFR for prognosis in a cohort of patients with renal cell carcinoma. Results. The cases that showed a higher level of this protein fell within the clear cell histological subtype (p = 0.001). The EGFR significance statistic was found with respect to a worse prognosis. In vivo significant correlations were found with PDGFR-β, Flk-1, Hif1-α, proteins related to differentiation (such as DLL3 and DLL4 ligands), and certain metabolic proteins such as Glut5. In silico significant associations gave us a panel of 32 EGFR-interacting proteins (EIP) using the APID and STRING databases. Conclusions. This work summarises the multifaceted role of EGFR in the pathology of RCC, and it identifies EIPs that could help to provide mechanistic explanations for the different behaviours observed in tumours

    Crossing paths in Human Renal Cell Carcinoma (hRCC)

    Get PDF
    [Abstract] Historically, cell-signaling pathways have been studied as the compilation of isolated elements into a unique cascade that transmits extracellular stimuli to the tumor cell nucleus. Today, growing evidence supports the fact that intracellular drivers of tumor progression do not flow in a single linear pathway, but disseminate into multiple intracellular pathways. An improved understanding of the complexity of cancer depends on the elucidation of the underlying regulatory networks at the cellular and intercellular levels and in their temporal dimension. The high complexity of the intracellular cascades causes the complete inhibition of the growth of one tumor cell to be very unlikely, except in cases in which the so-called “oncogene addiction” is known to be a clear trigger for tumor catastrophe, such as in the case of gastrointestinal stromal tumors or chronic myeloid leukemia. In other words, the separation and isolation of the driver from the passengers is required to improve accuracy in cancer treatment. This review will summarize the signaling pathway crossroads that govern renal cell carcinoma proliferation and the emerging understanding of how these pathways facilitate tumor escape. We outline the available evidence supporting the putative links between different signaling pathways and how they may influence tumor proliferation, differentiation, apoptosis, angiogenesis, metabolism and invasiveness. The conclusion is that tumor cells may generate their own crossroads/crosstalk among signaling pathways, thereby reducing their dependence on stimulation of their physiologic pathways

    Comprehensive lung injury pathology induced by mTOR inhibitors

    Get PDF
    Molecular Targets in Oncology[Abstract] Interstitial lung disease is a rare side effect of temsirolimus treatment in renal cancer patients. Pulmonary fibrosis is characterised by the accumulation of extracellular matrix collagen, fibroblast proliferation and migration, and loss of alveolar gas exchange units. Previous studies of pulmonary fibrosis have mainly focused on the fibro-proliferative process in the lungs. However, the molecular mechanism by which sirolimus promotes lung fibrosis remains elusive. Here, we propose an overall cascade hypothesis of interstitial lung diseases that represents a common, partly underlying synergism among them as well as the lung pathogenesis side effects of mammalian target of rapamycin inhibitors

    Prostate carcinoma and stem cells

    Get PDF
    [Abstract] Stem cells, as classically defined, are cells with a capacity to self-renew and to generate daughter cells that can differentiate down several cell lineages to form all of the cell types that are found in the mature tissue. Stem cells and tumour cells have many similar features, including infinite lifespan, self-renewal, multidrug resistance, telomerase expression and, in the instance of the prostate, androgen independence. Evidence supports a role for stem cells in the etiology of many types of cancer. The evolution of androgen-independent prostate carcinoma may reflect the emergence of stemlike prostate tumour cells. Because cancer may be a disease of stem cell lineages and Shh-Gli signalling controls the behaviour of precursors and of cells with stem cell properties in the mammalian tissues, prostate cancer might derive from inappropriate expansion of prostatic epithelial stem cell lineages caused by abnormal Shh-Gli function. This review attempts to integrate these recent results
    corecore