307 research outputs found

    Eliciting health state utilities for Dupuytren's contracture using a discrete choice experiment

    Get PDF
    Background and purpose An internet-based discrete choice experiment (DCE) was conducted to elicit preferences for a wide range of Dupuytren’s contracture (DC)-related health states. An algorithm was subsequently developed to convert these preferences into health state utilities that can be used to assess DC’s impact on quality of life and the value of its treatments. Methods Health state preferences for varying levels of DC hand severity were elicited via an internet survey from a sample of the UK adult population. Severity levels were deined using a combination of contractures (0, 45, or 90 degrees) in 8 proximal interphalangeal and metacarpophalangeal joints of the index, middle, ring, and little ingers. Right-handed, left-handed, and ambidextrous respondents indicated which hand was preferable in each of the 10 randomly-selected hand-pairings comparing different DC severity levels. For consistency across comparisons, anatomically precise digital hand drawings were used. To anchor preferences onto the traditional 0–1 utility scale used in health economic evaluations, unaffected hands were assigned a utility of 1.0 whereas the utility for a maximally affected hand (i.e., all 8 joints set at 90 degrees of contracture) was derived by asking respondents to indicate what combination of attributes and levels of the EQ-5D-5L proile most accurately relects the impact of living with such hand. Conditional logistic models were used to estimate indirect utilities, then rescaled to the anchor points on the EQ-5D-5L. Results Estimated utilities based on the responses of 1,745 qualiied respondents were 0.49, 0.57, and 0.63 for completely affected dominant hands, non-dominant hands, or ambidextrous hands, respectively. Utility for a dominant hand with 90-degree contracture in t h e metacarpophalangeal joints of the ring and little ingers was estimated to be 0.89. Separately, reducing the contracture of metacarpophalangeal joint for a little inger from 50 to 12 degrees would improve utility by 0.02. Interpretation DC is associated with substantial utility decrements. The algorithms presented herein provide a robust and lexible framework to assess utility for varying degrees of DC severity

    Circumcision to prevent HIV and other sexually transmitted infections in men who have sex with men: a systematic review and meta-analysis of global data

    Full text link
    Background: Men who have sex with men (MSM) are disproportionately affected by HIV and other sexually transmitted infections (STIs) worldwide. Previous reviews investigating the role of circumcision in preventing HIV and other STIs among MSM were inconclusive. Many new studies have emerged in the past decade. To inform global prevention strategies for HIV and other STIs among MSM, we reviewed all available evidence on the associations between circumcision and HIV and other STIs among MSM. Methods: In this systematic review and meta-analysis, we searched PubMed, Web of Science, BioMed Central, Scopus, ResearchGate, Cochrane Library, Embase, PsycINFO, Google Scholar, and websites of international HIV and STI conferences for studies published before March 8, 2018. Interventional or observational studies containing original quantitative data describing associations between circumcision and incident or prevalent infection of HIV and other STIs among MSM were included. Studies were excluded if MSM could not be distinguished from men who have sex with women only. We calculated pooled odds ratios (ORs) and their 95% CIs using random-effect models. We assessed risk of bias using the Newcastle-Ottawa scale. Findings: We identified 62 observational studies including 119 248 MSM. Circumcision was associated with 23% reduced odds of HIV infection among MSM overall (OR 0·77, 95% CI 0·67–0·89; number of estimates [k]=45; heterogeneity I 2 =77%). Circumcision was protective against HIV infection among MSM in countries of low and middle income (0·58, 0·41–0·83; k=23; I 2 =77%) but not among MSM in high-income countries (0·99, 0·90–1·09; k=20; I 2 =40%). Circumcision was associated with reduced odds of herpes simplex virus (HSV) infection among MSM overall (0·84, 0·75–0·95; k=5; I 2 =0%) and penile human papillomavirus (HPV) infection among HIV-infected MSM (0·71, 0·51–0·99; k=3; I 2 =0%). Interpretation: We found evidence that circumcision is likely to protect MSM from HIV infection, particularly in countries of low and middle income. Circumcision might also protect MSM from HSV and penile HPV infection. MSM should be included in campaigns promoting circumcision among men in countries of low and middle income. In view of the substantial proportion of MSM in countries of low and middle income who also have sex with women, well designed longitudinal studies differentiating MSM only and bisexual men are needed to clarify the effect of circumcision on male-to-male transmission of HIV and other STIs. Funding: National Natural Science Foundation of China, National Science and Technology Major Project of China, Australian National Health and Medical Research Council Early Career Fellowship, Sanming Project of Medicine in Shenzhen, National Institutes of Health, Mega Projects of National Science Research for the 13th Five-Year Plan, Doris Duke Charitable Foundation

    Genome wide analysis of gene expression changes in skin from patients with type 2 diabetes

    Get PDF
    Non-healing chronic ulcers are a serious complication of diabetes and are a major healthcare problem. While a host of treatments have been explored to heal or prevent these ulcers from forming, these treatments have not been found to be consistently effective in clinical trials. An understanding of the changes in gene expression in the skin of diabetic patients may provide insight into the processes and mechanisms that precede the formation of non-healing ulcers. In this study, we investigated genome wide changes in gene expression in skin between patients with type 2 diabetes and non-diabetic patients using next generation sequencing. We compared the gene expression in skin samples taken from 27 patients (13 with type 2 diabetes and 14 non-diabetic). This information may be useful in identifying the causal factors and potential therapeutic targets for the prevention and treatment of diabetic related diseases

    Cost-effectiveness of adjunct non-pharmacological interventions for osteoarthritis of the knee

    Get PDF
    BACKGROUND: There is limited information on the costs and benefits of alternative adjunct non-pharmacological treatments for knee osteoarthritis and little guidance on which should be prioritised for commissioning within the NHS. This study estimates the costs and benefits of acupuncture, braces, heat treatment, insoles, interferential therapy, laser/light therapy, manual therapy, neuromuscular electrical stimulation, pulsed electrical stimulation, pulsed electromagnetic fields, static magnets and transcutaneous electrical nerve Stimulation (TENS), based on all relevant data, to facilitate a more complete assessment of value. METHODS: Data from 88 randomised controlled trials including 7,507 patients were obtained from a systematic review. The studies reported a wide range of outcomes. These were converted into EQ-5D index values using prediction models, and synthesised using network meta-analysis. Analyses were conducted including firstly all trials and secondly only trials with low risk of selection bias. Resource use was estimated from trials, expert opinion and the literature. A decision analytic model synthesised all evidence to assess interventions over a typical treatment period (constant benefit over eight weeks or linear increase in effect over weeks zero to eight and dissipation over weeks eight to 16). RESULTS: When all trials are considered, TENS is cost-effective at thresholds of £20-30,000 per QALY with an incremental cost-effectiveness ratio of £2,690 per QALY vs. usual care. When trials with a low risk of selection bias are considered, acupuncture is cost-effective with an incremental cost-effectiveness ratio of £13,502 per QALY vs. TENS. The results of the analysis were sensitive to varying the intensity, with which interventions were delivered, and the magnitude and duration of intervention effects on EQ-5D. CONCLUSIONS: Using the £20,000 per QALY NICE threshold results in TENS being cost-effective if all trials are considered. If only higher quality trials are considered, acupuncture is cost-effective at this threshold, and thresholds down to £14,000 per QALY

    Methylation profiling of twenty promoter-CpG islands of genes which may contribute to hepatocellular carcinogenesis

    Get PDF
    BACKGROUND: Hepatocellular carcinoma (HCC) presents one of the major health threats in China today. A better understanding of the molecular genetics underlying malignant transformation of hepatocytes is critical to success in the battle against this disease. The methylation state of C5 of the cytosine in the CpG di-nucleotide that is enriched within or near the promoter region of over 50 % of the polymerase II genes has a drastic effect on transcription of these genes. Changes in the methylation profile of the promoters represent an alternative to genetic lesions as causative factors for the tumor-specific aberrant expression of the genes. METHODS: We have used the methylation specific PCR method in conjunction with DNA sequencing to assess the methylation state of the promoter CpG islands of twenty genes. Aberrant expression of these genes have been attributed to the abnormal methylation profile of the corresponding promoter CpG islands in human tumors. RESULTS: While the following sixteen genes remained the unmethylated in all tumor and normal tissues: CDH1, APAF1, hMLH1, BRCA1, hTERC, VHL, RARβ, TIMP3, DAPK1, SURVIVIN, p14(ARF), RB1, p15(INK4b), APC, RASSF1c and PTEN, varying degrees of tumor specific hypermethylation were associated with the p16(INK4a ), RASSF1a, CASP8 and CDH13 genes. For instance, the p16(INK4a )was highly methylated in HCC (17/29, 58.6%) and less significantly methylated in non-cancerous tissue (4/29. 13.79%). The RASSF1a was fully methylated in all tumor tissues (29/29, 100%), and less frequently methylated in corresponding non-cancerous tissue (24/29, 82.75%). CONCLUSIONS: Furthermore, co-existence of methylated with unmethylated DNA in some cases suggested that both genetic and epigenetic (CpG methylation) mechanisms may act in concert to inactivate the p16(INK4a )and RASSF1a in HCC. Finally, we found a significant association of cirrhosis with hypermethylation of the p16(INK4a )and hypomethylation of the CDH13 genes. For the first time, the survey was carried out on such an extent that it would not only provide new insights into the molecular mechanisms underscoring the aberrant expression of the genes in this study in HCC, but also offer essential information required for a good methylation-based diagnosis of HCC

    Characterizing Structural Transitions Using Localized Free Energy Landscape Analysis

    Get PDF
    Structural changes in molecules are frequently observed during biological processes like replication, transcription and translation. These structural changes can usually be traced to specific distortions in the backbones of the macromolecules involved. Quantitative energetic characterization of such distortions can greatly advance the atomic-level understanding of the dynamic character of these biological processes.Molecular dynamics simulations combined with a variation of the Weighted Histogram Analysis Method for potential of mean force determination are applied to characterize localized structural changes for the test case of cytosine (underlined) base flipping in a GTCAGCGCATGG DNA duplex. Free energy landscapes for backbone torsion and sugar pucker degrees of freedom in the DNA are used to understand their behavior in response to the base flipping perturbation. By simplifying the base flipping structural change into a two-state model, a free energy difference of upto 14 kcal/mol can be attributed to the flipped state relative to the stacked Watson-Crick base paired state. This two-state classification allows precise evaluation of the effect of base flipping on local backbone degrees of freedom.The calculated free energy landscapes of individual backbone and sugar degrees of freedom expectedly show the greatest change in the vicinity of the flipping base itself, but specific delocalized effects can be discerned upto four nucleotide positions away in both 5' and 3' directions. Free energy landscape analysis thus provides a quantitative method to pinpoint the determinants of structural change on the atomic scale and also delineate the extent of propagation of the perturbation along the molecule. In addition to nucleic acids, this methodology is anticipated to be useful for studying conformational changes in all macromolecules, including carbohydrates, lipids, and proteins

    Pseudouridine at position 55 in tRNA controls the contents of other modified nucleotides for low-temperature adaptation in the extreme-thermophilic eubacterium Thermus thermophilus

    Get PDF
    Pseudouridine at position 55 (Ψ55) in eubacterial tRNA is produced by TruB. To clarify the role of the Ψ55 modification, we constructed a truB gene disruptant (ΔtruB) strain of Thermus thermophilus which is an extreme-thermophilic eubacterium. Unexpectedly, the ΔtruB strain exhibited severe growth retardation at 50°C. We assumed that these phenomena might be caused by lack of RNA chaperone activity of TruB, which was previously hypothetically proposed by others. To confirm this idea, we replaced the truB gene in the genome with mutant genes, which express TruB proteins with very weak or no enzymatic activity. However the growth retardation at 50°C was not rescued by these mutant proteins. Nucleoside analysis revealed that Gm18, m5s2U54 and m1A58 in tRNA from the ΔtruB strain were abnormally increased. An in vitro assay using purified tRNA modification enzymes demonstrated that the Ψ55 modification has a negative effect on Gm18 formation by TrmH. These experimental results show that the Ψ55 modification is required for low-temperature adaptation to control other modified. 35S-Met incorporation analysis showed that the protein synthesis activity of the ΔtruB strain was inferior to that of the wild-type strain and that the cold-shock proteins were absence in the ΔtruB cells at 50°C

    Lysophosphatidic Acid Induces MDA-MB-231 Breast Cancer Cells Migration through Activation of PI3K/PAK1/ERK Signaling

    Get PDF
    Enhanced motility of cancer cells is a critical step in promoting tumor metastasis. Lysophosphatidic acid (LPA), representing the major mitogenic activity in serum, stimulates migration in various types of cancer cells. However, the underlying signaling mechanisms for LPA-induced motility of cancer cells remain to be elucidated.In this study, we found that LPA dose-dependently stimulated migration of MDA-MB-231 breast cancer cells, with 10 µM being the most effective. LPA also increased ERK activity and the MEK inhibitor U0126 could block LPA-induced ERK activity and cell migration. In addition, LPA induced PAK1 activation while ERK activation and cell migration were inhibited by ectopic expression of an inactive mutant form of PAK1 in MDA-MB-231 cells. Furthermore, LPA increased PI3K activity, and the PI3K inhibitor LY294002 inhibited both LPA-induced PAK1/ERK activation and cell migration. Moreover, in the breast cancer cell, LPA treatment resulted in remarkable production of reactive oxygen species (ROS), while LPA-induced ROS generation, PI3K/PAK1/ERK activation and cell migration could be inhibited by N-acetyl-L-Cysteine, a scavenger of ROS.Taken together, this study identifies a PI3K/PAK1/ERK signaling pathway for LPA-stimulated breast cancer cell migration. These data also suggest that ROS generation plays an essential role in the activation of LPA-stimulated PI3K/PAK1/ERK signaling and breast cancer cell migration. These findings may provide a basis for designing future therapeutic strategy for blocking breast cancer metastasis

    Modulating gradients in regulatory signals within mesenchymal stem cell seeded hydrogels: a novel strategy to engineer zonal articular cartilage.

    Get PDF
    This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Engineering organs and tissues with the spatial composition and organisation of their native equivalents remains a major challenge. One approach to engineer such spatial complexity is to recapitulate the gradients in regulatory signals that during development and maturation are believed to drive spatial changes in stem cell differentiation. Mesenchymal stem cell (MSC) differentiation is known to be influenced by both soluble factors and mechanical cues present in the local microenvironment. The objective of this study was to engineer a cartilaginous tissue with a native zonal composition by modulating both the oxygen tension and mechanical environment thorough the depth of MSC seeded hydrogels. To this end, constructs were radially confined to half their thickness and subjected to dynamic compression (DC). Confinement reduced oxygen levels in the bottom of the construct and with the application of DC, increased strains across the top of the construct. These spatial changes correlated with increased glycosaminoglycan accumulation in the bottom of constructs, increased collagen accumulation in the top of constructs, and a suppression of hypertrophy and calcification throughout the construct. Matrix accumulation increased for higher hydrogel cell seeding densities; with DC further enhancing both glycosaminoglycan accumulation and construct stiffness. The combination of spatial confinement and DC was also found to increase proteoglycan-4 (lubricin) deposition toward the top surface of these tissues. In conclusion, by modulating the environment through the depth of developing constructs, it is possible to suppress MSC endochondral progression and to engineer tissues with zonal gradients mimicking certain aspects of articular cartilage.Funding was provided by Science Foundation Ireland (President of Ireland Young Researcher Award: 08/Y15/B1336) and the European Research Council (StemRepair – Project number 258463)

    5, 8, 11, 14-eicosatetraynoic acid suppresses CCL2/MCP-1 expression in IFN-γ-stimulated astrocytes by increasing MAPK phosphatase-1 mRNA stability

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The peroxisome proliferator-activated receptor (PPAR)-α activator, 5,8,11,14-eicosatetraynoic acid (ETYA), is an arachidonic acid analog. It is reported to inhibit up-regulation of pro-inflammatory genes; however, its underlying mechanism of action is largely unknown. In the present study, we focused on the inhibitory action of ETYA on the expression of the chemokine, CCL2/MCP-1, which plays a key role in the initiation and progression of inflammation.</p> <p>Methods</p> <p>To determine the effect of ETYA, primary cultured rat astrocytes and microglia were stimulated with IFN-γ in the presence of ETYA and then, expression of CCL2/MCP-1 and MAPK phosphatase (MKP-1) were determined using RT-PCR and ELISA. MKP-1 mRNA stability was evaluated by treating actinomycin D. The effect of MKP-1 and human antigen R (HuR) was analyzed by using specific siRNA transfection system. The localization of HuR was analyzed by immunocytochemistry and subcellular fractionation experiment.</p> <p>Results</p> <p>We found that ETYA suppressed CCL2/MCP-1 transcription and secretion of CCL2/MCP-1 protein through up-regulation of MKP-1mRNA levels, resulting in suppression of c-Jun N-terminal kinase (JNK) phosphorylation and activator protein 1 (AP1) activity in IFN-γ-stimulated brain glial cells. Moreover, these effects of ETYA were independent of PPAR-α. Experiments using actinomycin D revealed that the ETYA-induced increase in MKP-1 mRNA levels reflected an increase in transcript stability. Knockdown experiments using small interfering RNA demonstrated that this increase in MKP-1 mRNA stability depended on HuR, an RNA-binding protein known to promote enhanced mRNA stability. Furthermore, ETYA-induced, HuR-mediated mRNA stabilization resulted from HuR-MKP-1 nucleocytoplasmic translocation, which served to protect MKP-1 mRNA from the mRNA degradation machinery.</p> <p>Conclusion</p> <p>ETYA induces MKP-1 through HuR at the post-transcriptional level in a receptor-independent manner. The mechanism revealed here suggests eicosanoids as potential therapeutic modulators of inflammation that act through a novel target.</p
    corecore