43 research outputs found

    Alpine bogs of southern Spain show human-induced environmental change superimposed on long-term natural variations

    Get PDF
    Recent studies have proved that high elevation environments, especially remote wetlands, are exceptional ecological sensors of global change. For example, European glaciers have retreated during the 20th century while the Sierra Nevada National Park in southern Spain witnessed the first complete disappearance of modern glaciers in Europe. Given that the effects of climatic fluctuations on local ecosystems are complex in these sensitive alpine areas, it is crucial to identify their long-term natural trends, ecological thresholds, and responses to human impact. In this study, the geochemical records from two adjacent alpine bogs in the protected Sierra Nevada National Park reveal different sensitivities and long-term environmental responses, despite similar natural forcings, such as solar radiation and the North Atlantic Oscillation, during the late Holocene. After the Industrial Revolution both bogs registered an independent, abrupt and enhanced response to the anthropogenic forcing, at the same time that the last glaciers disappeared. The different response recorded at each site suggests that the National Park and land managers of similar regions need to consider landscape and environmental evolution in addition to changing climate to fully understand implications of climate and human influence.This study was supported by the project P11-RNM 7332 of the “Junta de Andalucía”, the projects CGL2013-47038-R and CGL2015-67130-C2-1-R of the “Ministerio de Economía y Competitividad of Spain and Fondo Europeo de Desarrollo Regional FEDER” and the research group RNM0190 and RNM309 (Junta de Andalucía). A.G.-A. was also supported by a Marie Curie Intra-European Fellowship of the 7th Framework Programme for Research, Technological Development and Demonstration of the European Commission (NAOSIPUK. Grant Number: PIEF-GA-2012-623027) and by a Ramón y Cajal Fellowship RYC-2015-18966 of the Spanish Government (Ministerio de Economía y Competividad). J.L.T. was also supported by a Small Research Grant by the Carnegie Trust for the Universities of Scotland and hosted the NAOSIPUK project (PIEF-GA-2012-623027). M. J. R-R acknowledges the PhD funding provided by Consejería de Economía, Innovación, Ciencia y Empleo de la Junta de Andalucía (P11-RNM 7332)

    Holocene geochemical footprint from Semiarid alpine wetlands in southern Spain

    Get PDF
    Here we provide the geochemical dataset that our research group has collected after 10 years of investigation in the Sierra Nevada National Park in southern Spain. These data come from Holocene sedimentary records from four alpine sites (ranging from ∼2500 to ∼3000 masl): two peatlands and two shallow lakes. Different kinds of organic and inorganic analyses have been conducted. The organic matter in the bulk sediment was characterised using elemental measurements and isotope-ratio mass spectrometry (EA-IRMS). Leaf waxes in the sediment were investigated by means of chromatography with flame-ionization detection and mass spectrometry (GC-FID, GC-MS). Major, minor and trace elements of the sediments were analysed with atomic absorption (AAS), inductively coupled plasma mass spectrometry (ICP-MS), as well as X-ray scanning fluorescence. These data can be reused by environmental researchers and soil and land managers of the Sierra Nevada National Park and similar regions to identify the effect of natural climate change, overprinted by human impact, as well as to project new management policies in similar protected areas.Universidad de Granada. Departamento de Estratigrafía y PaleontologíaJunta de Andalucía: Grupos de investigación RNM190 y RNM309Junta de Andalucía: Proyecto P11-RNM-7332España, Ministerio de Economía y Competitividad: Proyecto CGL2013-47038-RRamón y Cajal Fellowship: RYC-2015-18966Small Research Grant by the Carnegie Trust for the Universities of ScotlandMarie Curie Intra-European Fellowship of the 7th Framework Programme for Research, Technological Development and Demonstration of the European Commission: NAOSIPUK. Grant Number: PIEF-GA-2012-62302

    Mercury distribution in tropical soil profiles related to origin of mercury and soil processes

    No full text
    The aim of the study is to improve our understanding of the vertical and lateral variations in the mercury content [Hg] of tropical soils. In addition to the distance to anthropogenic sources of Hg, the most frequently evoked determining factor is the abundance of Hg-bearing phases. Soil processes (weathering, mass or water transfer) determine the abundance of carrier phases. We assume that soil processes also have a direct impact on the distribution of Hg and that the impact is different according to the lithogenic or atmospheric origin of this element. We compare two types of soil (oxisol and ultisol) in the French Guiana forest, at localities a few tens of metres apart and exhibiting very different Hg contents. We show that vertical profiles of [Hg] are strongly related to the variations of [Hg-atmospheric], whereas [Hg-lithogenic] varies little. The penetration of Hg-atmospheric from the surface deposits is favoured down to a depth of 3 in in the oxisol and limited to the upper horizons of the ultisol because of contrasted hydraulic conductivity between the two soils. Hg is primarily of lithogenic origin in the alteritic horizons of the ultisol. The relative accumulation of Hg-lithogenic during the progressive weathering of parental material is limited near the soil surface by the disequilibrium of secondary minerals. Remobilization of Hg-atmospheric or Hg-lithogenic stored in the soil is a function of the chemical or particulate erosion of Hg-bearing phases, particularly active in the upper horizons of the ultisol, where lateral flow occurs during rain events. The correlations observed between the iron or clay contents and [Hg] can be caused by the affinity of Hg for these carrier phases, but may also reflect the weathering and the transfer processes which affect together the fate of Hg and the mineralogical and chemical composition of the soil

    Mercury speciation in a tropical soil association : consequence of gold mining on Hg distribution in French Guiana

    Get PDF
    Mercury (Hg) speciation was compared in French Guiana pristine soils and in Hg-contaminated soils impacted by former(similar to 1950's) gold mining activities which used Hg for gold amalgamation. Four selective extractions were performed on soil samples to assess the fraction of Hg present as Hg(II) and bond to organic matter (extracted by NH4OH and KOH), to amorphous iron oxides (ascorbate) and to soil components other than refractory minerals (HCl/HNO3). In addition, pyrolysis was used to quantify the content of elemental Hg in contaminated soils. X-ray diffraction (XRD) and X-ray fluorescence micro-mapping (mu XRF) were used in combination to selective extractions to assess the nature of targeted components, the possible overlaps between the different extraction procedures and the spatial correlation between Si, K, Fe, Au and Hg. In soil profiles from pristine toposequences, Hg concentrations (0.01-0.49 mu g.g(-1)) decreased with increasing depth in soil matrix. Hg concentrations also decreased from ferralsols to acrisols and further to gleysols. In pristine soil matrix, Hg was mainly associated to the clay-size fraction ( 2 mm), were similar to those reported in the pristine soil matrix. These nodules mainly contained Al-substituted hematite and goethite and were especially abundant upslope in ferralsols and acrisols. Gold-mined gleysols were strongly disorganized by former activities as neither the original structure nor the texture was preserved. Soil gramulometry was dominated by gravels, sands and silts. Hg concentrations (0.09-9.22 mu g.g(-1)) largely exceeded those in pristine soils. mu XRF allowed the identification of Au-amalgamated Hg and of elemental Hg droplets. Pyrolysis confirmed Hg to be mainly present in its elemental form in contaminated soils. Selective extractions showed additional minor contributions of Hg(II) associated to OM, and to Al or Fe oxides. The combination of selective extractions with XRD and mu XRF data showed that extraction efficiency is strongly dependent on the soil type, and that this efficiency needs to be determined on a soil-by-soil basis for Hg speciation studies. KOH extraction was especially delicate as crystalline and amorphous oxides were extracted together with organic matter

    Lichen and soil as indicators of an atmospheric mercury contamination in the vicinity of a chlor-alkali plant (Grenoble, France)

    No full text
    Atmospheric mercury (Hg) deposition around a mercury cell chlor-alkali plant located near Grenoble, south-east France, was assessed using Hg concentrations in lichens and soils. Hg content in the epiphytic Xanthoria parietina lichen ranged from similar to 0.07 to similar to 2.51 mu g g(-1), and concentrations decreased with increasing distance to the plant, with a contamination radius of similar to 2 km. Soil Hg concentration profiles were consistent with an atmospheric origin, with higher concentrations in the upper part of the profiles. Concentration of Hg in lichens and top soils (0-10 cm depth) as a function of the distance to the chlor-alkali plant exhibited highly similar variations. Using a simple first-order deposition model, mean Hg fallouts for the whole history of chlor-alkali plant are estimated to similar to 36g Hg day(-1) in this area, compatible with values reported for reactive gaseous mercury (RGM) emissions of similar industrial plants. Using literature data on RGM to total Hg emission ratio, we estimate that the plant emitted similar to 650 kg Hg year(-1). Two kilometres away from the plant, Hg content in top soils falls to values of (0.13 +/- 0.07) mu g g(-1) Hg, which is the local anthropogenic geochemical background level, but higher than unperturbed geochemical background found at the bottom of soil profiles (below 40 cm depth) estimated to (0.04 +/- 0.01) mu g g(-1) Hg. The present study evidences that lichens are a pertinent proxy for soil Hg contamination around chlor-alkali plants. They are attractive bioinonitoring tools since sampling and preparations protocols for lichens are less time consuming than those used for soils
    corecore