167 research outputs found

    Left ventricular diastolic function in relation to the urinary proteome: a proof-of-concept study in a general population

    Get PDF
    Background: In previous studies, we identified two urinary proteomic classifiers, termed HF1 and HF2, which discriminated subclinical diastolic left ventricular (LV) dysfunction from normal. HF1 and HF2 combine information from 85 and 671 urinary peptides, mainly up- or down-regulated collagen fragments. We sought to validate these classifiers in a population study. Methods: In 745 people randomly recruited from a Flemish population (49.8 years; 51.3% women), we measured early and late diastolic peak velocities of mitral inflow (E and A) and mitral annular velocities (e' and a') by conventional and tissue Doppler echocardiography, and the urinary proteome by capillary electrophoresis coupled with mass spectrometry. Results: In the analyses adjusted for sex, age, body mass index, blood pressure, heart rate, LV mass index and intake of medications, we expressed effect sizes per 1-SD increment in the classifiers. HF1 was associated with 0.204 cm/s lower e' peak velocity (95% confidence interval, 0.057–0.351; p = 0.007) and 0.145 higher E/e' ratio (0.023–0.268; p = 0.020), while HF2 was associated with a 0.174 higher E/e' ratio (0.046–0.302; p = 0.008). According to published definitions, 67 (9.0%) participants had impaired LV relaxation and 96 (12.9%) had elevated LV filling pressure. The odds of impaired relaxation associated with HF1 was 1.38 (1.01–1.88; p = 0.043) and that of increased LV filling pressure associated with HF2 was 1.38 (1.00–1.90; p = 0.052). Conclusions: In a general population, the urinary proteome correlated with diastolic LV dysfunction, proving its utility for early diagnosis of this condition

    KDM6A Regulates Cell Plasticity and Pancreatic Cancer Progression by Non-Canonical Activin Pathway

    Get PDF
    BACKGROUND & AIMS: Inactivating mutations of KDM6A, a histone demethylase, were frequently found in pancreatic ductal adenocarcinoma (PDAC). We investigated the role of KDM6A in PDAC development. METHODS: We performed a pancreatic tissue microarray analysis of KDM6A protein levels. We used human PDAC cell lines for KDM6A knockout and knockdown experiments. We performed Bru-seq analysis to elucidate the effects of KDM6A loss on global transcription. We performed studies with Ptf1a(Cre); LSL-Kras(G12D); Trp53(R172H/+); Kdm6a(fl/fl or fl/Y), Ptf1a(Cre); Kdm6a(fl/fl or fl/Y), and orthotopic xenograft mice to investigate the impacts of Kdm6a deficiency on pancreatic tumorigenesis and pancreatitis. RESULTS: Loss of KDM6A was associated with metastasis in PDAC patients. Bru-seq analysis revealed upregulation of the epithelial-mesenchymal transition pathway in PDAC cells deficient of KDM6A. Loss of KDM6A promoted mesenchymal morphology, migration, and invasion in PDAC cells in vitro. Mechanistically, activin A and subsequent p38 activation likely mediated the role of KDM6A loss. Inhibiting either activin A or p38 reversed the effect. Pancreas-specific Kdm6a-knockout mice pancreata demonstrated accelerated PDAC progression, developed a more aggressive undifferentiated type PDAC, and increased metastases in the background of Kras and p53 mutations. Kdm6a-deficient pancreata in a pancreatitis model had a delayed recovery with increased PDAC precursor lesions compared to wild-type pancreata. CONCLUSIONS: Loss of KDM6A accelerates PDAC progression and metastasis, most likely by a non-canonical p38-dependant activin A pathway. KDM6A also promotes pancreatic tissue recovery from pancreatitis. Activin A might be utilized as a therapeutic target for KDM6A-deficient PDACs

    Role of LKB1-CRTC1 on Glycosylated COX-2 and Response to COX-2 Inhibition in Lung Cancer

    Get PDF
    Cyclooxygenase-2 (COX-2) directs the synthesis of prostaglandins including PGE-2 linking inflammation with mitogenic signaling. COX-2 is also an anticancer target, however, treatment strategies have been limited by unreliable expression assays and by inconsistent tumor responses to COX-2 inhibition

    Risk factors and early markers for echovirus type 11 associated haemorrhage-hepatitis syndrome in neonates, a retrospective cohort study

    Get PDF
    BackgroundEchovirus type 11(E-11) can cause fatal haemorrhage-hepatitis syndrome in neonates. This study aims to investigate clinical risk factors and early markers of E-11 associated neonatal haemorrhage-hepatitis syndrome.MethodsThis is a multicentre retrospective cohort study of 105 neonates with E-11 infection in China. Patients with haemorrhage-hepatitis syndrome (the severe group) were compared with those with mild disease. Clinical risk factors and early markers of haemorrhage-hepatitis syndrome were analysed. In addition, cytokine analysis were performed in selective patients to explore the immune responses.ResultsIn addition to prematurity, low birth weight, premature rupture of fetal membrane, total parenteral nutrition (PN) (OR, 28.7; 95% CI, 2.8–295.1) and partial PN (OR, 12.9; 95% CI, 2.2–77.5) prior to the onset of disease were identified as risk factors of developing haemorrhage-hepatitis syndrome. Progressive decrease in haemoglobin levels (per 10 g/L; OR, 1.5; 95% CI, 1.1–2.0) and platelet (PLT) < 140 × 10⁹/L at early stage of illness (OR, 17.7; 95% CI, 1.4–221.5) were associated with the development of haemorrhage-hepatitis syndrome. Immunological workup revealed significantly increased interferon-inducible protein-10(IP-10) (P < 0.0005) but decreased IFN-α (P < 0.05) in peripheral blood in severe patients compared with the mild cases.ConclusionsPN may potentiate the development of E-11 associated haemorrhage-hepatitis syndrome. Early onset of thrombocytopenia and decreased haemoglobin could be helpful in early identification of neonates with the disease. The low level of IFN-α and elevated expression of IP-10 may promote the progression of haemorrhage-hepatitis syndrome

    HIV-1-Infected and Immune-Activated Macrophages Induce Astrocytic Differentiation of Human Cortical Neural Progenitor Cells via the STAT3 Pathway

    Get PDF
    Diminished adult neurogenesis is considered a potential mechanism in the pathogenesis of HIV-1-associated dementia (HAD). In HAD, HIV-1-infected and immune-activated brain mononuclear phagocytes (MP; perivascular macrophages and microglia) drive central nervous system (CNS) inflammation and may alter normal neurogenesis. We previously demonstrated HIV-1-infected and lipopolysaccharide (LPS) activated monocyte-derived macrophages (MDM) inhibit human neural progenitor cell (NPC) neurogenesis, while enhancing astrogliogenesis through the secretion of the inflammatory cytokines such as tumor necrosis factor-alpha (TNF-α), in vitro and in vivo. Here we further test the hypothesis that HIV-1-infected/activated MDM promote NPC astrogliogenesis via activation of the transcription factor signal transducer and activator of transcription 3 (STAT3), a critical factor for astrogliogenesis. Our results show that LPS-activated MDM-conditioned medium (LPS-MCM) and HIV-infected/LPS-activated MDM-conditioned medium (LPS+HIV-MCM) induced Janus kinase 1 (Jak1) and STAT3 activation. Induction of the Jak-STAT3 activation correlated with increased glia fibrillary acidic protein (GFAP) expression, demonstrating an induction of astrogliogenesis. Moreover, STAT3-targeting siRNA (siSTAT3) decreased MCM-induced STAT3 activation and NPC astrogliogenesis. Furthermore, inflammatory cytokines (including IL-6, IL-1β and TNF-α) produced by LPS-activated and/or HIV-1-infected MDM may contribute to MCM-induced STAT3 activation and astrocytic differentiation. These observations were confirmed in severe combined immunodeficient (SCID) mice with HIV-1 encephalitis (HIVE). In HIVE mice, siRNA control (without target sequence, sicon) pre-transfected NPCs injected with HIV-1-infected MDM showed more astrocytic differentiation and less neuronal differentiation of NPCs as compared to NPC injection alone. siSTAT3 abrogated HIV-1-infected MDM-induced astrogliogenesis of injected NPCs. Collectively, these observations demonstrate that HIV-1-infected/activated MDM induces NPC astrogliogenesis through the STAT3 pathway. This study generates important data elucidating the role of brain inflammation in neurogenesis and may provide insight into new therapeutic strategies for HAD

    The transcription factor Ets1 is important for CD4 repression and Runx3 up-regulation during CD8 T cell differentiation in the thymus

    Get PDF
    The transcription factor Ets1 contributes to the differentiation of CD8 lineage cells in the thymus, but how it does so is not understood. In this study, we demonstrate that Ets1 is required for the proper termination of CD4 expression during the differentiation of major histocompatability class 1 (MHC I)–restricted thymocytes, but not for other events associated with their positive selection, including the initiation of cytotoxic gene expression, corticomedullary migration, or thymus exit. We further show that Ets1 promotes expression of Runx3, a transcription factor important for CD8 T cell differentiation and the cessation of Cd4 gene expression. Enforced Runx3 expression in Ets1-deficient MHC I–restricted thymocytes largely rescued their impaired Cd4 silencing, indicating that Ets1 is not required for Runx3 function. Finally, we document that Ets1 binds at least two evolutionarily conserved regions within the Runx3 gene in vivo, supporting the possibility that Ets1 directly contributes to Runx3 transcription. These findings identify Ets1 as a key player during CD8 lineage differentiation and indicate that it acts, at least in part, by promoting Runx3 expression

    Vitamin D and cause-specific vascular disease and mortality:a Mendelian randomisation study involving 99,012 Chinese and 106,911 European adults

    Get PDF

    Potential of Core-Collapse Supernova Neutrino Detection at JUNO

    Get PDF
    JUNO is an underground neutrino observatory under construction in Jiangmen, China. It uses 20kton liquid scintillator as target, which enables it to detect supernova burst neutrinos of a large statistics for the next galactic core-collapse supernova (CCSN) and also pre-supernova neutrinos from the nearby CCSN progenitors. All flavors of supernova burst neutrinos can be detected by JUNO via several interaction channels, including inverse beta decay, elastic scattering on electron and proton, interactions on C12 nuclei, etc. This retains the possibility for JUNO to reconstruct the energy spectra of supernova burst neutrinos of all flavors. The real time monitoring systems based on FPGA and DAQ are under development in JUNO, which allow prompt alert and trigger-less data acquisition of CCSN events. The alert performances of both monitoring systems have been thoroughly studied using simulations. Moreover, once a CCSN is tagged, the system can give fast characterizations, such as directionality and light curve
    corecore