1,577 research outputs found

    Modulation Instability, Breathers, and Bound Solitons in an Erbium-Doped Fiber System with Higher-Order Effects

    Get PDF
    We mainly investigate the generalized nonlinear Schrödinger-Maxwell-Bloch system which governs the propagation of optical solitons in nonlinear erbium-doped fibers with higher-order effects. We deduce Lax pair, analyze modulation instability conditions, construct the Darboux transformation, and derive the Akhmediev breathers, Ma-breathers, bound solitons, and two-breather solutions for this system. Considering the influences of higher-order effects, propagation properties of those solitons are discussed

    Super-Twisting Hybrid Control for Ship-Borne PMSM

    Get PDF

    Empirical regularities of opening call auction in Chinese stock market

    Full text link
    We study the statistical regularities of opening call auction using the ultra-high-frequency data of 22 liquid stocks traded on the Shenzhen Stock Exchange in 2003. The distribution of the relative price, defined as the relative difference between the order price in opening call auction and the closing price of last trading day, is asymmetric and that the distribution displays a sharp peak at zero relative price and a relatively wide peak at negative relative price. The detrended fluctuation analysis (DFA) method is adopted to investigate the long-term memory of relative order prices. We further study the statistical regularities of order sizes in opening call auction, and observe a phenomenon of number preference, known as order size clustering. The probability density function (PDF) of order sizes could be well fitted by a qq-Gamma function, and the long-term memory also exists in order sizes. In addition, both the average volume and the average number of orders decrease exponentially with the price level away from the best bid or ask price level in the limit-order book (LOB) established immediately after the opening call auction, and a price clustering phenomenon is observed.Comment: 11 pages, 6 figures, 3 table

    AT2R (Angiotensin II Type 2 Receptor)-Mediated Regulation of NCC (Na-Cl Cotransporter) and Renal K Excretion Depends on the K Channel, Kir4.1

    Get PDF
    AT2R (AngII [angiotensin II] type 2 receptor) is expressed in the distal nephrons. The aim of the present study is to examine whether AT2R regulates NCC (Na-Cl cotransporter) and Kir4.1 of the distal convoluted tubule. AngII inhibited the basolateral 40 pS K channel (a Kir4.1/5.1 heterotetramer) in the distal convoluted tubule treated with losartan but not with PD123319. AT2R agonist also inhibits the K channel, indicating that AT2R was involved in tonic regulation of Kir4.1. The infusion of PD123319 stimulated the expression of tNCC (total NCC) and pNCC (phosphorylated NCC; Thr(53)) by a time-dependent way with the peak at 4 days. PD123319 treatment (4 days) stimulated the basolateral 40 pS K channel activity, augmented the basolateral K conductance, and increased the negativity of distal convoluted tubule membrane. The stimulation of Kir4.1 was essential for PD123319-induced increase in NCC because inhibiting AT2R increased the expression of tNCC and pNCC only in wild-type but not in the kidney-specific Kir4.1 knockout mice. Renal clearance study showed that thiazide-induced natriuretic effect was larger in PD123319-treated mice for 4 days than untreated mice. However, this effect was absent in kidney-specific Kir4.1 knockout mice which were also Na wasting under basal conditions. Finally, application of AT2R antagonist decreased the renal ability of K excretion and caused hyperkalemia in wild-type but not in kidney-specific Kir4.1 knockout mice. We conclude that AT2R-dependent regulation of NCC requires Kir4.1 in the distal convoluted tubule and that AT2R plays a role in stimulating K excretion by inhibiting Kir4.1 and NCC

    Application of Local Wave Decomposition in Seismic Signal Processing

    Get PDF
    Local wave decomposition (LWD) method plays an important role in seismic signal processing for its superiority in significantly revealing the frequency content of a seismic signal changes with time variation. The LWD method is an effective way to decompose a seismic signal into several individual components. Each component represents a harmonic signal localized in time, with slowly varying amplitudes and frequencies, potentially highlighting different geologic and stratigraphic information. Empirical mode decomposition (EMD), the synchrosqueezing transform (SST), and variational mode decomposition (VMD) are three typical LWD methods. We mainly study the application of the LWD method especially EMD, SST, and VMD in seismic signal processing including seismic signal de‐noising, edge detection of seismic images, and recovery of the target reflection near coal seams
    corecore