146 research outputs found

    Nonfragile Robust H

    Get PDF
    The nonfragile H∞ filtering problem for a kind of Takagi-Sugeno (T-S) fuzzy stochastic system which has a time-varying delay and parameter uncertainties has been studied in this paper. Sufficient conditions for stochastic input-to-state stability (SISS) of the fuzzy stochastic systems are obtained. Attention is focused on the design of a nonfragile H∞ filter such that the filtering error system can tolerate some level of the gain variations in the filter and the H∞ performance level also could be satisfied. By using the SISS result, the approach to design the nonfragile filter is proposed in terms of linear matrix inequalities. Finally, an illustrative example is given to demonstrate the effectiveness of the proposed method

    An ancient adaptive episode of convergent molecular evolution confounds phylogenetic inference

    Get PDF
    Convergence can mislead phylogenetic inference by mimicking shared ancestry, but has been detected only rarely in molecular evolution. Here, we show that significant convergence occurred in snake and agamid lizard mitochondrial genomes. Most evidence, and most of the mitochondrial genome, supports one phylogenetic tree, but a subset of mostly amino acid-altering mitochondrial sites strongly support a radically different phylogeny. These sites are convergent, probably selected, and overwhelm the signal from other sites. This suggests that convergent molecular evolution can seriously mislead phylogenetics, even with large data sets. Radical phylogenies inconsistent with previous evidence should be treated cautiously

    SINEs, evolution and genome structure in the opossum

    Get PDF
    Short INterspersed Elements (SINEs) are non-autonomous retrotransposons, usually between 100 and 500 base pairs (bp) in length, which are ubiquitous components of eukaryotic genomes. Their activity, distribution, and evolution can be highly informative on genomic structure and evolutionary processes. To determine recent activity, we amplified more than one hundred SINE1 loci in a panel of 43 M. domestica individuals derived from five diverse geographic locations. The SINE1 family has expanded recently enough that many loci were polymorphic, and the SINE1 insertion-based genetic distances among populations reflected geographic distance. Genome-wide comparisons of SINE1 densities and GC content revealed that high SINE1 density is associated with high GC content in a few long and many short spans. Young SINE1s, whether fixed or polymorphic, showed an unbiased GC content preference for insertion, indicating that the GC preference accumulates over long time periods, possibly in periodic bursts. SINE1 evolution is thus broadly similar to human Alu evolution, although it has an independent origin. High GC content adjacent to SINE1s is strongly correlated with bias towards higher AT to GC substitutions and lower GC to AT substitutions. This is consistent with biased gene conversion, and also indicates that like chickens, but unlike eutherian mammals, GC content heterogeneity (isochore structure) is reinforced by substitution processes in the M. domestica genome. Nevertheless, both high and low GC content regions are apparently headed towards lower GC content equilibria, possibly due to a relative shift to lower recombination rates in the recent Monodelphis ancestral lineage. Like eutherians, metatherian (marsupial) mammals have evolved high CpG substitution rates, but this is apparently a convergence in process rather than a shared ancestral state. © 2007 Elsevier B.V. All rights reserved

    Content validation of the progressive collapsing foot deformity classification

    Get PDF
    Objective: The aim of this study was to validate the content accuracy of the PCFD classification. Methods: A survey-based study distributed through international foot and ankle programs among surgeons with vast experience in practice to analyze the terminology and interpretations used in the PCFD classification. A returned survey with completion of all questions filled out was considered a valid record. Descriptive statistical analysis was applied using SAS version 9.4 for data processing, statistical analysis, and visualization. Results: Eighty-two valid returned surveys from surgeons in 22 countries with a mean of 16 years in clinical practice were included. Among them, 80.5% of the participants considered the PCFD classification helpful in guiding decision-making, 79.3% thought it helped facilitate diagnosis and documentation, 58.5% found it easy to use, 30.5% were unlikely to use the classification, and 29.3% noted that the interpretation of the classification was not clear. Regarding the accuracy, clarity, and clinical relevance of terminology, 42.7% had difficulty in using increased foot and ankle offset, 35.4% had difficulty in using increased hindfoot moment arm, 19.5% found peritalar subluxation not clear, 13.4% found the term sinus tarsi impingement an unclear description, and 8.5% found forefoot varus difficult to diagnose. Conclusions: This international survey-based study provides readers with insights into the content of the PCFD classification. The findings indicate that some terminologies used in the PCFD classification are not universally understood. The authors recommend that modifications may be beneficial to enhance the accuracy and user-friendliness of the PCFD classification. Level of Evidence II; Retrospective study

    Radiogenomics analysis reveals the associations of dynamic contrast-enhanced–MRI features with gene expression characteristics, PAM50 subtypes, and prognosis of breast cancer

    Get PDF
    BackgroundTo investigate reliable associations between dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) features and gene expression characteristics in breast cancer (BC) and to develop and validate classifiers for predicting PAM50 subtypes and prognosis from DCE-MRI non-invasively.MethodsTwo radiogenomics cohorts with paired DCE-MRI and RNA-sequencing (RNA-seq) data were collected from local and public databases and divided into discovery (n = 174) and validation cohorts (n = 72). Six external datasets (n = 1,443) were used for prognostic validation. Spatial–temporal features of DCE-MRI were extracted, normalized properly, and associated with gene expression to identify the imaging features that can indicate subtypes and prognosis.ResultsExpression of genes including RBP4, MYBL2, and LINC00993 correlated significantly with DCE-MRI features (q-value < 0.05). Importantly, genes in the cell cycle pathway exhibited a significant association with imaging features (p-value < 0.001). With eight imaging-associated genes (CHEK1, TTK, CDC45, BUB1B, PLK1, E2F1, CDC20, and CDC25A), we developed a radiogenomics prognostic signature that can distinguish BC outcomes in multiple datasets well. High expression of the signature indicated a poor prognosis (p-values < 0.01). Based on DCE-MRI features, we established classifiers to predict BC clinical receptors, PAM50 subtypes, and prognostic gene sets. The imaging-based machine learning classifiers performed well in the independent dataset (areas under the receiver operating characteristic curve (AUCs) of 0.8361, 0.809, 0.7742, and 0.7277 for estrogen receptor (ER), human epidermal growth factor receptor 2 (HER2)-enriched, basal-like, and obtained radiogenomics signature). Furthermore, we developed a prognostic model directly using DCE-MRI features (p-value < 0.0001).ConclusionsOur results identified the DCE-MRI features that are robust and associated with the gene expression in BC and displayed the possibility of using the features to predict clinical receptors and PAM50 subtypes and to indicate BC prognosis

    Sequencing the genome of the Burmese python (Python molurus bivittatus) as a model for studying extreme adaptations in snakes

    Get PDF
    The Consortium for Snake Genomics is in the process of sequencing the genome and creating transcriptomic resources for the Burmese python. Here, we describe how this will be done, what analyses this work will include, and provide a timeline

    Repetitive Elements May Comprise Over Two-Thirds of the Human Genome

    Get PDF
    Transposable elements (TEs) are conventionally identified in eukaryotic genomes by alignment to consensus element sequences. Using this approach, about half of the human genome has been previously identified as TEs and low-complexity repeats. We recently developed a highly sensitive alternative de novo strategy, P-clouds, that instead searches for clusters of high-abundance oligonucleotides that are related in sequence space (oligo “clouds”). We show here that P-clouds predicts >840 Mbp of additional repetitive sequences in the human genome, thus suggesting that 66%–69% of the human genome is repetitive or repeat-derived. To investigate this remarkable difference, we conducted detailed analyses of the ability of both P-clouds and a commonly used conventional approach, RepeatMasker (RM), to detect different sized fragments of the highly abundant human Alu and MIR SINEs. RM can have surprisingly low sensitivity for even moderately long fragments, in contrast to P-clouds, which has good sensitivity down to small fragment sizes (∼25 bp). Although short fragments have a high intrinsic probability of being false positives, we performed a probabilistic annotation that reflects this fact. We further developed “element-specific” P-clouds (ESPs) to identify novel Alu and MIR SINE elements, and using it we identified ∼100 Mb of previously unannotated human elements. ESP estimates of new MIR sequences are in good agreement with RM-based predictions of the amount that RM missed. These results highlight the need for combined, probabilistic genome annotation approaches and suggest that the human genome consists of substantially more repetitive sequence than previously believed

    Genome of the marsupial Monodelphis domestica reveals innovation in non-coding sequences

    Get PDF
    We report a high-quality draft of the genome sequence of the grey, short-tailed opossum (Monodelphis domestica). As the first metatherian (\u27marsupial\u27) species to be sequenced, the opossum provides a unique perspective on the organization and evolution of mammalian genomes. Distinctive features of the opossum chromosomes provide support for recent theories about genome evolution and function, including a strong influence of biased gene conversion on nucleotide sequence composition, and a relationship between chromosomal characteristics and X chromosome inactivation. Comparison of opossum and eutherian genomes also reveals a sharp difference in evolutionary innovation between protein-coding and non-coding functional elements. True innovation in protein-coding genes seems to be relatively rare, with lineage-specific differences being largely due to diversification and rapid turnover in gene families involved in environmental interactions. In contrast, about 20% of eutherian conserved non-coding elements (CNEs) are recent inventions that postdate the divergence of Eutheria and Metatheria. A substantial proportion of these eutherian-specific CNEs arose from sequence inserted by transposable elements, pointing to transposons as a major creative force in the evolution of mammalian gene regulation. ©2007 Nature Publishing Group
    corecore