
Frontiers in Oncology

OPEN ACCESS

EDITED BY

Dirk Geerts,
University of Amsterdam, Netherlands

REVIEWED BY

Stefano Marrone,
University of Naples Federico II, Italy
Glaucia Maria Machado-Santelli,
Universidade de São Paulo, Brazil

*CORRESPONDENCE

Yun Liu
liuyun@njmu.edu.cn
Hongde Liu
liuhongde@seu.edu.cn
Xiaoan Liu
liuxiaoan@126.com

†These authors have contributed
equally to this work

SPECIALTY SECTION

This article was submitted to
Breast Cancer,
a section of the journal
Frontiers in Oncology

RECEIVED 13 May 2022

ACCEPTED 29 June 2022
PUBLISHED 28 July 2022

CITATION

Ming W, Zhu Y, Bai Y, Gu W, Li F, Hu Z,
Xia T, Dai Z, Yu X, Li H, Gu Y, Yuan S,
Zhang R, Li H, Zhu W, Ding J, Sun X,
Liu Y, Liu H and Liu X (2022)
Radiogenomics analysis reveals the
associations of dynamic contrast-
enhanced–MRI features with gene
expression characteristics,
PAM50 subtypes, and prognosis
of breast cancer.
Front. Oncol. 12:943326.
doi: 10.3389/fonc.2022.943326

COPYRIGHT

© 2022 Ming, Zhu, Bai, Gu, Li, Hu, Xia,
Dai, Yu, Li, Gu, Yuan, Zhang, Li, Zhu,
Ding, Sun, Liu, Liu and Liu. This is an
open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use,
distribution or reproduction is
permitted which does not comply with
these terms.

TYPE Original Research
PUBLISHED 28 July 2022

DOI 10.3389/fonc.2022.943326
Radiogenomics analysis reveals
the associations of dynamic
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features with gene expression
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subtypes, and prognosis of
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Background: To investigate reliable associations between dynamic contrast-

enhancedmagnetic resonance imaging (DCE-MRI) features and gene expression

characteristics in breast cancer (BC) and to develop and validate classifiers for

predicting PAM50 subtypes and prognosis from DCE-MRI non-invasively.

Methods: Two radiogenomics cohorts with paired DCE-MRI and RNA-

sequencing (RNA-seq) data were collected from local and public databases and

divided into discovery (n= 174) and validation cohorts (n= 72). Six external datasets

(n= 1,443) were used for prognostic validation. Spatial–temporal features of DCE-

MRI were extracted, normalized properly, and associated with gene expression to

identify the imaging features that can indicate subtypes and prognosis.

Results: Expression of genes including RBP4, MYBL2, and LINC00993

correlated significantly with DCE-MRI features (q-value < 0.05). Importantly,

genes in the cell cycle pathway exhibited a significant association with imaging

features (p-value < 0.001). With eight imaging-associated genes (CHEK1, TTK,

CDC45, BUB1B, PLK1, E2F1, CDC20, and CDC25A), we developed a

radiogenomics prognostic signature that can distinguish BC outcomes in

multiple datasets well. High expression of the signature indicated a poor

prognosis (p-values < 0.01). Based on DCE-MRI features, we established

classifiers to predict BC clinical receptors, PAM50 subtypes, and prognostic
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gene sets. The imaging-based machine learning classifiers performed well in

the independent dataset (areas under the receiver operating characteristic

curve (AUCs) of 0.8361, 0.809, 0.7742, and 0.7277 for estrogen receptor (ER),

human epidermal growth factor receptor 2 (HER2)-enriched, basal-like, and

obtained radiogenomics signature). Furthermore, we developed a prognostic

model directly using DCE-MRI features (p-value < 0.0001).

Conclusions: Our results identified the DCE-MRI features that are robust and

associated with the gene expression in BC and displayed the possibility of using

the features to predict clinical receptors and PAM50 subtypes and to indicate

BC prognosis.
KEYWORDS

breast cancer, radiogenomics, radiomics, PAM50 subtypes, DCE-MRI, machine
learning
Introduction
Breast cancer (BC) remains a leading death cause in women

and exhibits high heterogeneity in both clinical and molecular

(gene expression/mutation) respects (1, 2). According to gene

expression, BC is defined as five intrinsic molecular subtypes,

namely, luminal-A, luminal-B, human epidermal growth factor

receptor 2 (HER2)-enriched, basal-like, and normal-like (3).

Clinically, BC is routinely divided into four subtypes based on

the expression of four histopathological receptors (estrogen

receptor (ER), progesterone receptor (PR), HER2, and Ki-67)

(4). For the subtypes, the diagnosis, treatment, prognosis, and

gene expression are very different. Therefore, grasping and

monitoring the molecular characteristics and gene expression

patterns timely and accurately are meaningful for diagnosis,

subtyping, and prognosis of BC.

Medical imaging is one kind of non-invasive approach for

characterizing the disease. By extracting high-throughput

quantitative imaging features from medical images and

applying the information to clinical-decision support systems,

radiomics is gaining more attention in cancer research (5, 6).

However, artificial intelligence (AI) is developing rapidly, and

some models were presented to help the automatic segmentation

or computer-aided diagnosis from clinical cancer imaging (7–

11). For example, by using AI and radiomics, researchers can

assess the personalized cancer risk in the early breast magnetic

resonance imaging (MRI) exams and can discriminate benign or

malignant breast lesions automatically (10, 11). Radiogenomics

is an extended field of radiomics, which aims to identify the

association between medical imaging features and genetic

characteristics or gene expression in the concept of precision

medicine (12). It is helpful to study molecular characteristics
02
directly from imaging features to establish typing, diagnosis, and

prognosis for clinical applications (12, 13). Among different

imaging techniques, dynamic contrast-enhanced magnetic

resonance imaging (DCE-MRI) is widely used in BC research

for its strengths of three-dimensional resolution and high

imaging quality (12, 14).

Previous studies suggested that the DCE-MRI features were

related to the gene expression level of both coding RNAs and non-

coding RNAs and can reflect the dysregulation of disease-related gene

pathways in BC patients (15–24). For example, more irregular and

larger tumors usually correlated with higher expression of genes of

cell cycle and DNA damage checkpoint (19), and the associations of

miRNAs with imaging features differed across BC subtypes (21).

DCE-MRI features were found to be associated with the deregulation

or genetic alterations of some important pathways such as themTOR

pathway and oncogenic signaling pathways (22, 23). Some works also

attempted to establish predictionmodels for clinical biomarkers (such

as ER and PR) as well as immunohistochemistry (IHC) subtypes of

BC based on quantitative imaging features with amachine learning or

deep learning approach (25–33). A study combined the MRI features

from both peritumoral and intratumoral regions to predict the

HER2-enriched molecular subtype and achieve an area under the

curve (AUC) of 0.89 (31). In a recent large meta-analysis, the IHC

subtypes of BC were predicted non-invasively by the radiomics

analysis based on MRI features (33). In addition, uncovering the

ability of imaging features to assess the treatment response and

predict clinical outcomes in BC is a valuable research aspect. Some

radiomics signatures on MRI were developed to predict the clinical

outcomes of BC patients such as the metastasis of axillary lymph

nodes and disease-free survival (DFS) (27, 34–37).

Despite the advancement in this field, most studies of

association analysis were only on a single-central dataset, which

might lead to the systematic bias of data, especially for the medical
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imaging data (38). Although many works have been performed to

establish the prediction models for BC biomarkers or IHC subtypes,

very few studies established and validated the PAM50 subtypes

classifiers. It is very critical to improve the identification accuracy of

the PAM50 subtypes in clinical diagnosis, since the currently widely

used IHC-based alternative subtyping uses the expression levels of

only four IHC markers (ER, PR, HER2, and Ki67), whereas the

PAM50 subtyping system is able to portray the typical and

comprehensive transcriptomic characteristics of BC.

In this work, we collected DCE-MRI and RNA-sequencing

(RNA-seq) data from two cohorts consisting of multiple centers

with over 300 BC samples. With the datasets, we performed a

comprehensive analysis by extracting and sorting quantitative

DCE-MRI features and associating the imaging features to gene

expression to explore the possibility of constructing models to

predict prognosis and subtyping for BC. We revealed a similar

pattern of association in the two cohorts and provided a picture

of the relationship between gene expression, imaging features,

and BC prognosis. In addition, we established and validated the

prediction models for each PAM50 intrinsic molecular subtype

based on quantitative DCE-MRI features for the first time.
Materials and methods

Patient selection and pathological review

The discovery cohort comprised female patients who were

histologically confirmed to have invasive ductal carcinoma

between August 2016 and December 2018. Both the

preoperative T1-weighted DCE-MRI data and matched tumor

tissue specimens can be accessible to the patients from the

institutional database. The inclusion and exclusion criteria of

samples are shown in Figure S1. The final discovery cohort was

composed of 174 cases. A multi-institutional dataset (TCGA-

BRCA, n = 1,090) was retrieved from The Cancer Imaging

Archive (TCIA) database and The Cancer Genome Atlas

(TCGA), and 72 cases were included in the validation cohort

whose DCE-MRI was acquired on a 1.5-Tesla magnet strength

by GE scanners. We further retrieved six datasets (n = 1,443)

from the Gene Expression Omnibus (GEO) database to assess

prognosis, with the series accession numbers GSE1456,

GSE3494, GSE7390, GSE20685, GSE25055, and GSE25065.

The detailed clinical characterization of the two cohorts is

listed in Table 1. ER, PR, HER2, and Ki67 were used to

determine the clinical IHC subtypes for each patient in the

discovery cohort. ER-positive, HER2-negative, high PR

expression (more than 20%), and low Ki67 expression (less

than 20%) samples were defined as luminal-A. ER-positive,

HER2-negative, low PR expression, or high Ki-67 expression

samples were defined as luminal-B. Furthermore, ER- and

HER2-positive samples were defined as luminal-B as well. ER-

negative, PR-negative, and HER2-positive samples were HER2-
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positive, and finally, all negative samples were triple-negative BC

(TNBC). Two-sided Fisher’s exact test or Pearson’s chi-squared

test was used to assess differences in the clinical or

transcriptomic characteristics of BC samples in the discovery

and validation cohorts.
Extraction of quantitative dynamic
contrast-enhanced–mri features

For original imaging data, the first step of its application was to

compute various quantitative features, which can reflect the

different properties of the images. The detailed imaging protocols

for the two cohorts are discussed subsequently. T1-weighted DCE-

MR images in the discovery cohort were scanned in the axial

position and performed by using a Siemens TrioTim 3-Tesla

scanner (Siemens Healthcare, Erlangen, Germany). The

parameters for the bilateral protocol of most images are as

follows: repetition time, 423 ms; echo time, 15.7 ms; slice

thickness, 0.9 mm; flip angle, 10°; field of view, 340 × 340 mm;

and matrix size, 448 × 448 pixels. Gadolinium-diethylenetriamine

pentaacetic acid (Gd-DTPA) in a dose of 0.1 mmol/kg was injected

intravenously into the body at an amount of 15 ml. Three-

dimensional dynamic sequences were performed with six time

points, including one pre-contrast and five post-contrast (from

approximately 1 min after contrast to approximately 4.5 min). MRI

data from the validation cohort, including one pre-contrast and

three to five contrast-enhanced images, were obtained by using a

T1-weighted three-dimensional spoiled gradient-echo sequence

with a gadolinium-based contrast agent. The in-plane resolution

of images ranged from 0.53 to 0.86 mm, spacing between slices

ranged from 2 to 3 mm, the flip angle was 10°, and the acquisition

matrix was 256 × 192.

In extracting features for the collected and filtered imaging

data, we first localized and segmented the tumor lesions by using

the threshold segmentation method and manual correction by

two radiologists. We applied threshold segmentation on each 3D

image from the subtracted images of the first post-contrast

sequences to generate the roughly 3D tumor masks using the

open-source software 3D Slicer. Then a senior radiologist (WC,

with 10 years of breast imaging experience) and a junior

radiologist (YZ, with 3 years of breast imaging experience)

manually corrected the tumor masks in 3D Slicer. The two

radiologists were blinded to the clinical data and confirmed the

corrected tumor masks in consensus. Sequences for DCE-MR

images at four time points were selected and further analyzed in

both cohorts, including pre-contrast, and early, middle, and late

post-contrast (approximately 1, 3, and 4.5 min, respectively). To

avoid data heterogeneity bias, the N4 bias correction algorithm

was applied to remove shading artifacts in the 3T MR images

(39). Next, a Python package pyradiomics (version 2.2.0) was

used to image normalization and quantitative imaging features

calculation (40). Image normalization was performed by
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remapping the histogram to fit within m ± 3s (m, mean gray level

within the volume of tumor segmentation; s, gray-level standard
deviation). After that, the images were resampled to an isotropic

voxel resolution of 1 mm using the B-spline method before

feature extraction. Image pre-processing and feature extraction

were conducted in Python 3.5.2. Totally, 15,494 high-

throughput quantitative imaging features were calculated for

each case based on the basic imaging features provided by Image

Biomarker Standardisation Initiative (IBSI). The details are

described in Supplementary Methods of Supplementary File S1.
Rna-sequencing and calculation of
breast cancer transcriptomic
characteristics

After imaging feature extraction, we first attempted to reveal

the reliable association between quantitative DCE-MRI features

and transcriptomic characteristics of BC. Tumor tissue was frozen

and collected from 199 samples in the discovery cohort. Total

RNA except for ribosomal RNA (rRNA) was extracted from

tumor tissue using VAHTS Total RNA-seq (H/M/R) Library

Prep Kit for Illumina in light of the manufacturer’s protocol,

immediately frozen in liquid nitrogen, and stored at −80°C. RNA-

seq libraries were constructed by Ovation human FFPE RNA-seq
Frontiers in Oncology 04
library systems (NuGEN Technologies, San Carlos, CA, USA) and

sequenced on Illumina HiSeq X Ten platform (Illumina, San

Diego, CA, USA) using paired-end 150-bp runs. Raw Illumina

sequence reads were first processed by Trimmomatic (41) to

remove sequencing adaptors and low-quality reads, using the

f o l l ow ing pa r ame t e r s : LEADING :3 TRAIL ING :5

SLIDINGWINDOW:4:15 MINLEN:60. RNA-seq reads were

aligned to human genome 19 by STAR (42) and quantified by

HTSeq-Count (43). The expression level of genes was quantified

in the forms of both count data and normalized FPKM (fragments

per kilobase of exon per million reads mapped). The sequencing

coverage and quality statistics for each sample are summarized in

Supplementary File S2. Expression values of 57,773 transcripts

were determined, and the PAM50 intrinsic subtypes and risk

scores of MammaPrint and Oncotype DX were calculated by

using the R package genefu (44).
Association analysis between dynamic
contrast-enhanced–mri features and
gene expression

We used Spearman’s rank correlation coefficients to calculate

the linear relationship between each imaging feature and each gene

expression level, resulting in two matrices (rows were imaging
TABLE 1 The clinical and transcriptomic characteristics in two cohorts.

Characteristics The discovery cohort (n = 174) The validation cohort (n = 72) p-Value

Age ≤50 years: 95 (54.6)/>50 years: 79 (45.4) ≤50 years: 30 (41.7)/>50 years: 42 (58.3) 0.088a

IHC
ER status
PR status
HER2 status
Ki67 status

P: 127 (73.0)/N: 47 (27.0)
P: 111 (63.8)/N: 63 (36.2)
P: 36 (20.7)/N: 138 (79.3)

High: 136 (78.2)/low: 38 (21.8)

P: 61 (84.7)/N: 11 (15.3)
P: 55 (76.4)/N: 17 (23.6)

P: 14 (19.4)/N: 37 (51.4)/NA: 21 (29.2)
NA

0.071a

0.077a

0.407a

NA

IHC-based subtypes
Luminal-A
Luminal-B
HER2-positive
Triple-negative

28 (16.1)
101 (58.1)
15 (8.6)
30 (17.2)

NA
NA
NA
NA

NA
NA
NA
NA

PAM50 intrinsic subtypes
Luminal-A
Luminal-B
HER2-enriched
Basal-like
Normal-like

49 (28.1)
43 (24.7)
29 (16.7)
43 (24.7)
10 (5.8)

44 (61.1)
9 (12.5)
5 (6.9)
10 (13.9)
4 (5.6)

<0.001b

Prognostic risk
MammaPrint
Oncotype DX

High: 131 (75.3)/low: 43 (24.7)
High: 168 (96.6)/intermediate or low: 6 (3.4)

High: 55 (76.4)/low: 17 (23.6)
High: 67 (93.1)/intermediate or low: 5 (6.9)

0.984a

0.385a

Pathological stage
I stage
II stage
III stage

55 (31.6)
94 (54.0)
25 (14.4)

17 (23.6)
47 (65.3)
8 (11.1)

0.267a
front
Clinical, MRI, and molecular data for both cohorts were available. The patient distribution of the two cohorts was not different except for the PAM50 molecular subtypes. Unless otherwise
indicated, data are number of samples or the p-value of statistical test, and the data in parentheses are percentages.
P, receptor status; N, negative; NA, not available; IHC, immunohistochemistry; ER, estrogen receptor; PR, progesterone receptor; HER2, human epidermal growth factor receptor 2.
ap-Value for the two-sided Pearson’s chi-squared test.
bp-Value for the two-sided Fisher’s exact test.
iersin.org

https://doi.org/10.3389/fonc.2022.943326
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Ming et al. 10.3389/fonc.2022.943326
features, and columns were genes): one for the correlation

coefficient r and the other for the p-value. Considering the

imaging feature as a disease phenotype that was regulated by

multiple genes, we corrected the p-value matrix by row using

false discovery rates (FDRs) for the multiple comparisons. The

imaging-associated genes were identified for the two cohorts under

the criteria of both correlation coefficient r > 0.3 and q-value < 0.05.

Gene enrichment analysis was conducted by Metascape (45) on the

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways (p-

value < 0.01).
Imaging feature selection and imaging-
based classifiers

We hoped to predict BC clinical receptors, IHC subtypes,

PAM50 intrinsic subtypes, and prognostic gene sets using

informative DCE-MRI features. Therefore, we needed to carry

out the feature selection in the high-dimensional imaging

features and further construct the machine learning classifiers.

One-against-others strategy was used to build the binary

classifiers in predicting the clinical receptors, subtypes, and

prognostic gene sets. First, the discovery cohort was randomly

divided into a training/validation set and a test set in a ratio of 7

to 3, and the validation cohort was used as an independent

multi-institutional test set. Since high-throughput radiomics

features were extracted, we performed an embedded feature

selection procedure by using fivefold cross-validation and least

absolute shrinkage and selection operator (LASSO) logistic

regression (LR). Specifically, for each classification task, 100

times of the embedded feature selection procedure were applied

to the training set, and features yielding the smallest

classification error at each time were recorded as informative

features. After that, the informative features for each

classification task were obtained by counting the frequency.

Next, four machine learning algorithms, including elastic net

regression (ENR), support vector machine (SVM), random forest

(RF), and naïve Bayes (NB) were applied to establish classifiers by

using feature forward search combined with grid search. The hyper-

parameter alpha used to adjust the L1 and L2 penalties of ENR was

set from 0 to 1 with a step of 0.1 and other parameters as default in

training. The detailed hyper-parameters of SVM with polynomial

kernel during training are as follows: the cost was from 1 to 15 with

a step of 1, the degree was from 3 to 20 with a step of 1, and a

dynamic gamma was used. If the number of model input imaging

features ni was smaller than 20, the gamma was set from 0.01 to 2 ×

1 ÷ ni with a step of 0.01; else, the gamma was set from 0.001 to 2 ×

1 ÷ ni with a step of 0.001. For RF modeling, a seq of the parameter

tree number from 100 to 2000 with a step of 50 was used and

another parameter as default. Default parameters were used for NB

classifier training. Performances were evaluated by the area under

the receiver operating characteristic (ROC) curve (AUC), and

accuracy (ACC). The cutoff of the ROC value was determined at
Frontiers in Oncology 05
the maximum Youden’s index. All of these were implemented in R

3.6.2. Then, a multi-classified neural network was also trained for

PAM50 subtypes specifically. The activation function was set as

‘relu’, and the loss function was ‘categorical cross-entropy’. We used

‘Adam’ with default parameters as the iterator. Fivefold cross-

validation was used to prevent overfitting. The model was

constructed by Keras and TensorFlow in Python 3.5.2.
Prognostic and statistical analyses

The Kaplan–Meier analysis with log-rank test was used to

analyze the differences between DFS, overall survival (OS), or

disease recurrence-free survival (DRFS). Univariate and

multivariate Cox proportional risk regression analyses with the

log-rank test were used to evaluate the risk of imaging feature on

BC survival. Hazard ratio (HR) of risk genes or imaging features

and 95% confidence interval (CI) were obtained by the Kaplan–

Meier plotter or risk analysis (46).

Student’s t-test was used to compare the levels of DCE-MRI

features in different groups. The correlation between gene

expressions was calculated by Pearson’s correlation coefficient.

The prognostic and statistical analyses were conducted in R 3.6.2.
Results

Clinical and transcriptomic
characteristics of breast cancer samples

In Table 1, the clinical and transcriptomic characteristics of

the two cohorts are listed. No significant difference was found in

age, ER, PR, HER2, prognostic risk, or a pathological stage for

the two cohorts. PAM50 subtypes differed between the two

cohorts (Fisher’s exact test, p-value < 0.001). In the validation

cohort, PAM50 luminal-A was dominant, while in the discovery

cohort, five subtypes showed a roughly equal proportion. The

luminal-A dominant bias was also found in TCGA-BRCA

dataset compared with the discovery cohort (Pearson’s chi-

squared test, p-value < 0.001). We thought the bias was

probably due to ethnic differences, as the discovery cohort is

composed entirely of the Chinese population. The results of

substitutive typing based on IHC markers were significantly

different from the intrinsic molecular subtypes in the discovery

cohort (Pearson’s chi-square test, p-value < 0.001), suggesting

that IHC-based subtyping still needed to be refined.
Associations of dynamic contrast-
enhanced–mri features and
gene expression

We identified 2,805 and 2,047 genes that correlated to DCE-

MRI features in each cohort, under the criteria of both correlation
frontiersin.org
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coefficient r > 0.3 and q-value < 0.05. The proportion of MRI-

associated genes was similar in the two cohorts (Figure 1A). Coding

genes were more than half in the associated genes, and more than

20% of the associated genes were lncRNAs. It was interesting that

most of the features were associated with a small number of genes,

while only a few features related to a large number of genes,

showing distribution in a power-law way (Figures 1B; S2A–D).

Remarkably, the imaging features of tumor shape showed broader

associations with gene expression. Nearly 14.2% of the shape

features were linked to 7% of all the MRI-associated genes in the

discovery cohort, and 35.7% were linked to 30% of all the MRI-

associated genes in the validation cohort (Figure 1B). This indicated

that shape features of imaging might represent more information

on gene expression than other features.

Some genes showed a tight correlation with the imaging features.

Figure 1C shows the correlation between gene RBP4 expression and

gldm_DependenceVariance in the post-early MR images, with r =

0.33 and 0.47 in the two cohorts. RBP4 is proposed as an adipokine

that links obesity and cancer. Recent research suggested that RBP4

could enhance the metastatic potential and increase the impairment

of blood flow in BC tumors (47). Gene ADIPOQ could induce

autophagic cell death in BC, and its expression is associated with

some classical texture features from the pre-contrast images, such as
Frontiers in Oncology 06
pre_Uniformity (Figure S2E), pre_glcm_Contrast, and

pre_glcm_Idm (48). We also found that some ncRNAs were

associated with imaging features in BC. LINC00993 is a breast-

specific lncRNA and acts as a tumor suppressor in BC (49). Feature

like pre_LoG2_glszm_LargeAreaHighGrayLevelEmphasis (Figure

S2F) could depict the expression of LINC00993. Moreover,

LINC00993 was found to be related to the B-mode ultrasound

phenotype of BC in literature (50).
Dynamic contrast-enhanced–mri
features reflected the activity of
pathways in breast cancer

We performed functional analysis for the imaging feature-

associated genes. In the discovery cohort, the associated 2,805

genes were enriched in 24 KEGG pathways (p-value < 0.01,

Figure S2G), including ‘extracellular matrix (ECM) receptor

interaction’, ‘pathways in cancer’, ‘complement and coagulation

cascades’, ‘cytokine–cytokine receptor interaction’, ‘calcium

signaling pathway’, ‘microRNAs in cancer’, ‘protein digestion and

absorption’, and ‘hippo signaling pathway’. In the validation cohort,

the 2,047 associated genes were enriched in 15 KEGG pathways
B

C D E

A

FIGURE 1

Association analysis of DCE-MRI features and BC transcriptomic characteristics. DCE-MRI features associated with molecules including mRNAs
and non-coding RNAs in both cohorts (A). Tumor shape features showed broader association with gene expression than other features. x-Axis
represents the percentage of the number of genes, and y-axis denotes the percentage of the number of imaging features related to genes to
the total number of features in this feature class. The point on the lower right corner of the curve means that there are fewer proportions of
imaging features associated with more genes (B). The expression of RAP4 was associated with the same imaging feature. x-Axis represents the
log2-transformed value of FPKM gene expression, and y-axis denotes the imaging feature value (C). A total of 294 MRI-associated genes
overlapped in the two cohorts (D), and five KEGG pathways including cell cycle were enriched in these overlapped genes (E). DCE, dynamic
contrast enhanced; BC, breast cancer; FPKM, fragments per kilobase of exon per million reads mapped; KEGG, Kyoto Encyclopedia of Genes
and Genomes.
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(Figure S2H). Four pathways overlapped in both cohorts, including

‘calcium signaling pathway’, ‘protein digestion and absorption’,

‘regulation of lipolysis in adipocytes and glycine’, and ‘serine and

threonine metabolism’.

We next identified 294 important MRI-associated genes that

were present in both cohorts (Figure 1D), and 138 of them

shared the same imaging gene pairs (Supplementary File S3).

Particularly, five PAM50 marker genes, MYBL2, MELK, EXO1,

BCL2, and MKI67, were included, suggesting that DCE-MRI

features can indeed reflect the key molecular characteristics of

BC. Importantly, five KEGG pathways were enriched in the

overlapped genes (Figure 1E). Among them, the pathway ‘cell

cycle’ obtained the most attention (p-value < 0.001), and eight

imaging-associated genes (CHEK1, TTK, CDC45, BUB1B, PLK1,

E2F1, CDC20, and CDC25A) enriched in this pathway. The

results indicated a possibility of observing cancer-related

pathways by DCE-MRI in a non-invasive way.
A prognostic signature based on the
eight imaging-associated genes

The expression level of the eight imaging-associated genes,

which were found in the cell cycle pathway, was highly correlated in

each cohort (Figures 2A, B). High expression of these genes was a

risk factor for DFS with HRs > 1.6 assessed by the Kaplan–Meier

plotter (Figure 2C). With the use of the eight imaging-associated

genes, a radiogenomics prognostic signature (named BC-8mriG)
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was developed to predict survival by calculating the average

expression of the eight genes. The median of BC-8mriG values

from a population was used as the cutoff to determine the high and

low BC-8mriG expression patients in this population. In TCGA-

BRCA dataset, significant differences in both OS and DFS were

observed for the patients stratified by the median expression of BC-

8mriG (Figures 3A, B, p-value = 0.039 and 0.0062, respectively).

Such kinds of differences in OS or DFS were also found in the

datasets GSE1456, GSE3494, GSE7390, GSE20685, and GSE25055

(Figures 3C–G), except for GSE25065 (Figures 3H). Although the

results in TCGA-BRCA may be a slight discordance due to older

age at onset (57.53 years in high BC-8mriG expression group and

60.05 years in low group) and longer follow-up, the survival

patterns, namely, high and low expression of BC-8mriG

corresponding to poor and favorable prognosis, were largely

consistent in these datasets. This suggested the BC-8mriG was a

reliable prognostic signature for BC. In comparison with other

developed prognostic models (MammaPrint and Oncotype DX),

BC-8mriG performed better (Figure S3).
Imaging-based classifiers in predicting
clinical receptors, subtypes, and
prognostic gene sets

We established and validated the classifiers based on the

DCE-MR imaging features to predict BC clinical receptors,

subtypes, and prognostic gene sets. For each classification task,
B

CA

FIGURE 2

Co-expression and HRs of genes in BC-8mriG. The eight MRI-associated genes (BC-8mriG genes) were highly positively correlated in the
discovery cohort (n = 174) and TCGA-BRCA dataset (n = 1090) (A, B). Forest plot displays that BC-8mriG genes were all risk factors for BC
(C). HRs, hazard ratios; BC, breast cancer.
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we used the imaging features of the best-preformed algorithm

from the four machine learning methods as the final selected

features. In Supplementary File S4, the informative imaging

features obtained by using LASSO embedded LR algorithm,

and the final selected imaging features were both listed for

each classification task. Based on the selected imaging features,

the classifiers for different tasks were established. SVM showed

the best performance overall (Figures S4A, B), and the final

hyper-parameters for the optimal classifiers were detailed in

Supplementary File S5. In Table 2, we summarized the

performance of the classifiers, including the number of the

selected features, AUC, and accuracy in the two independent

test sets. Our models showed better performance compared with

other studies of the prediction for receptors status and clinical

subtypes (Table S1). The AUCs for ER status were 0.7303 and

0.8361, and the AUCs for PR status were 0.7671 and 0.7455

(Figure 4A). Importantly, we established the PAM50 molecular

subtype classifiers based on DCE-MRI features for the first time

to our knowledge, and the models performed well in the external

test set, with AUCs of 0.733, 0.7354, 0.809, and 0.7742 for

luminal-A, luminal-B, HER2-enriched, and basal-like,

respectively (Figures 4B, C). The results demonstrated the

feasibility of predicting the PAM50 subtypes of BC only based

on quantitative imaging features. We also built risk degree

prediction models for MammaPrint and BC-8mriG and
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obtained the AUCs of 0.7048 and 0.7277 in the test

sets (Figure 4D).

For the classifier of BC-8mriG, 29 important DCE-MRI

features (detailed in Supplementary File S4) were selected and

used. We further tested the classifying capacity of the 29 imaging

features in the patients with high and low gene expression of BC-

8mriG. The result showed that two imaging features, BIF1

(BasicPostMiddle LoG3 firstorder Kurtosis) and BIF2

(DynamicC11 wavelet LHL gldm DependenceEntropy),

exhibited significantly different levels between patients with

high and low expression of the eight genes in both discovery

and validation cohorts (Figures 5A, D). In both cohorts, the high

level of BIF1 was found in BC-8mriG high expression patients,

while the low level of BIF1 corresponded to BC-8mriG low

expression (Figures 5B, C). A similar result was observed for

DCE-MRI feature BIF2 (Figures 5E, F).

Furthermore, a multi-classified neural network model was

constructed to classify PAM50 molecular subtypes of BC. Some

of the informative imaging features overlapped in the four

binary PAM50 classification tasks (Figure S4C). We selected

337 imaging features to build the multi-classified model for the

prediction of PAM50 subtypes. The fivefold cross-validation

method was used to determine the optimal epoch in the

discovery cohort, and eventually, our model was tested in the

independent test set. The performance of evaluation metrics for
B

C

D

E

F

G

H

A

FIGURE 3

Prognostic ability of BC-8mriG. Patient stratification based on expression of BC-8mriG showed significantly different OS and DFS in TCGA-
BRCA dataset (A, B). The prognostic ability of BC-8mriG was validated in six external datasets by using Kaplan–Meier analysis (C–H). OS, overall
survival; DFS, disease-free survival.
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our multi-classified model is shown in Figures S4D–F. The final

model was determined when the highest AUC value was

obtained for the validation set (AUC = 0.803), and the multi-

classified AUC in the test set was 0.6622.
Prognostic analysis with dynamic
contrast-enhanced–mri features

In order to extend the clinical application, we attempted to

construct a prognostic model only using DCE-MRI features. Due to

the short time of follow-up data in the discovery cohort, we assessed

the BC prognosis of the 29 DCE-MRI features in the validation

cohort by using univariate Cox proportional risk regression analysis

first, resulting in only one imaging feature that was related to the

DFS of BC significantly (BIF3 (DynamicC8 wavelet LHH gldm

LargeDependenceHighGrayLevelEmphasis), p-value = 0.0214).

Therefore, we selected the top 2 imaging features with the

smallest p-value as candidate risk features and calculated their

HRs by using multivariate Cox analysis. The HRs of imaging

features BIF3 and BIF4 (DynamicC8 LoG3 firstorder

InterquartileRange) were 1.9 and 4.3, respectively, indicating that

they were risk factors for DFS with a p-value of 0.0426 (Figure 6A).

Using the two DCE-MRI features, we constructed a radiomics

signature (named as MRI_RiskScore) for BC. In the validation

cohort, BC samples were stratified by the mean of MRI_RiskScore,

and highly significant differences in DFS were observed between

high- and low-risk samples (Figure 6B, log-rank p-value < 0.0001).

Although MRI_RiskScore showed less prognostic prediction in the

discovery cohort, BC patients with high scores still tended to have a
Frontiers in Oncology 09
bad clinical outcome (Figure 6C). Overall, the results exhibited that

the two DCE-MRI features can partially predict BC prognosis.
Discussion

In this study, 246 BC samples were organized from a local

institution and a public database for radiogenomics analysis. The

discovery cohort (n = 174) was a Chinese population cohort, and

the validation cohort (n = 72) was a public dataset. In addition,

1,443 BC cases were also collected from the GEO database. Our

results indicated that gene expression broadly correlated with

DCE-MRI features. Consistent with previous findings, the

KEGG pathway cell cycle was also found to be closely

associated with DCE-MRI features (p-value < 0.001). Based on

the relationship, we developed a prognostic signature (BC-

8mriG) and validated it with good prognostic power in

multiple datasets (p-value < 0.01). We further developed and

validated classifiers for IHC receptors, subtypes, and gene sets

only based on the imaging features. Particularly, as we know we

were the first study to predict PAM50 subtypes based on DCE-

MRI features directly. Furthermore, our results suggested that

DCE-MRI features might be an independent predictor of BC

outcome. In general, we analyzed the association of DCE-MRI

features with expression characteristics, molecular pathways,

clinical receptors, subtypes, and prognosis, providing a non-

invasive way of understanding BC.

PAM50 intrinsic subtype is the most important and widely

used molecular subtyping system of BC. Each subtype has a

distinct gene expression pattern, and diverse behavior in
TABLE 2 Predictive performance of classifiers based on DCE-MRI features.

Classification tasks Features selected Independent internal test set (n = 52) Independent external test set (n = 72)

AUC ACC AUC ACC

ER (+ vs −) 95 0.7303 0.6538 0.8361 0.8056

PR (+ vs −) 19 0.7671 0.75 0.7455 0.6667

HER2 (+ vs −) 47 0.7539 0.75 0.61 0.5686

Ki67 (high vs low) 16 0.8958 0.7885 NA NA

IHC: LumA vs Not-LumA 6 0.7855 0.7692 NA NA

IHC: LumB vs Not-LumB 3 0.7061 0.7115 NA NA

IHC: HER2p vs Not-HER2p 8 0.9042 0.8302 NA NA

IHC: TN vs Not-TN 51 0.8295 0.7115 NA NA

PAM50: LumA vs Not-LumA 20 0.8252 0.7692 0.733 0.7361

PAM50: LumB vs Not-LumB 5 0.7673 0.8302 0.7354 0.6528

PAM50: HER2E vs Not-HER2E 2 0.7933 0.6346 0.809 0.6389

PAM50: Basal vs Not-Basal 2 0.7751 0.7692 0.7742 0.8194

MammaPrint 6 0.717 0.6538 0.7048 0.75

BC-8mriG 29 0.7479 0.7885 0.7277 0.7222
Models were established for predicting clinical receptors, subtypes, and prognostic gene sets and validated in both independent test sets. Important model evaluation indicators were also
calculated.
+, positive; −, negative; LumA, luminal-A; LumB, luminal-B; HER2p, HER2 positive; TN, triple-negative; HER2E, HER2-enriched; Basal, basal-like; AUC, area under the receiver operating
characteristic curve; ACC, accuracy; NA, not available; ER, estrogen receptor; PR, progesterone receptor; IHC, immunohistochemistry.
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molecular mechanism, histological characteristic, clinical

presentation, and treatment response. In our work, we found

that the distribution of PAM50 subtypes in the Chinese

population (Chinese Han) was different from that in other

races (two-sided Pearson’s chi-squared test, p-value < 0.001).

Previous studies reported that BC patients in diverse populations

had distinct prevalence and mortality rates for different subtypes

(51–54). For example, the prevalence of luminal-A BC in

Chinese Han was remarkably lower than that in Caucasian

whites (51, 53), blacks with luminal-A or luminal-B tumors

were more likely to die of BC, and Asians usually had a lower

mortality rate than whites (52). A recent large cohort study

including 6,652 BC patients showed that patients of different

races had different genomic characteristics, such as TP53

variations occurred more often in blacks than whites or

Asians, which might be a potentially important factor in the

racial heterogeneity of the PAM50 intrinsic molecular subtypes

of BC (55). Racial disparities of BC remain a persistent challenge
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in clinical practice, particularly for some therapeutic strategies

based on targetable genes, which require more focused research

in the future.

Radiogenomics is a promising approach to realizing

precision medicine by using non-invasive imaging technology

to monitor the molecular behavior of the tumor, as the latest

studies reported (56–60). For instance, the tumor mutational

burden risk can be predicted in both primary and liver-

metastatic colorectal cancer (AUCs: 0.732 and 0.812) by using

radiogenomics analysis based on computed tomography (CT)

images (57). Radiomics features from positron emission

tomography (PET) imaging of 18F-fluorodeoxyglucose (FDG)

markedly related to the activation and alteration of mTOR

pathway genes in hepatocellular carcinoma (58), and similar

results were also reported in BC that some immune-related

pathways were associated with FDG-PET features, such as flux

constants and static uptake (59), and some researchers also

aimed to predict Ki-67 status from multiparametric MRI
B

C D

A

FIGURE 4

The model performance in two independent test sets. The ROC curves of the classifiers for ER status, PR status (A), PAM50 luminal-A, luminal-B
(B), HER2-enriched, basal-like (C), MammaPrint, and BC-8mriG (D) in the two cohorts. ROC, receiver operating characteristic; ER, estrogen
receptor; PR, progesterone receptor; HER2, human epidermal growth factor receptor 2.
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images (AUC: 0.79) in BC (60). In addition, integration of

radiomics and genomic features is also a promising area, such

as the radiogenomics model (AUC: 0.87) showed much better

performance than the radiomics-only models (AUCs: 0.71 and

0.73) in the prediction of pathological complete response of

TNBC (61). In this work, a number of important genes and
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pathways associated with BC were found to be associated with

imaging features. For example, MYBL2 expression was

correlated with 42 imaging features such as LoG3_glcm_Idm

and LoG3_glcm_Contrast of post-middle and post-later MR

images in both cohorts, and a high expression of MYBL2 usually

means BC metastasis, worse DRFS, and shorter OS (62).
B
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FIGURE 5

Heterogeneity of DCE-MRI features in different BC-8mriG expression patients. DCE-MRI features BIF1 (A–C) and BIF2 (D–F) were significantly
different in samples with high and low expression of BC-8mriG in both discovery and validation cohorts (*, **, and ***: p-values < 0.05, 0.01,
and 0.001, respectively). DCE, dynamic contrast enhanced.
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Interestingly, we observed that several adipocyte-related genes

such as LEP and FABP4 displayed plenty of associations with

imaging features. LEP is a multifunctional hormone secreted

from adipocytes, linking obesity to BC, and may play important

roles in BC development (63). FABP4 is also a key adipokine

produced by adipocytes and is mainly involved in the transport

of fatty acids. Recent research demonstrated that FABP4 can

promote obesity-associated BC development and may be a novel

player linking obesity and BC risk (64). This result suggested that

MR imaging features could capture the molecular characteristics

of both intratumoral and microenvironment, extending the

potential application scenarios of radiogenomics.

Previous studies indicated that imaging features could reflect

the expression activities of gene sets that have specific functions

(15, 18–20). In our work, we observed MRI-associated genes

enriched in some KEGG pathways, especially in the cell cycle.

Cell cycle deregulation is regarded as a hallmark of malignant

that enables limitless cell division of tumor cells and is likely to

represent cell proliferation and can be used for prognostication.

Notably, consistent with our results, some researchers also found

an association between imaging features and the deregulation of

the cell cycle (19, 20, 65). Some pathways involved in the process

of extracellular material exchange activities, such as extracellular
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matrix (ECM) receptor interaction, protein digestion and

absorption, cytokine–cytokine receptor interaction, and cell

adhesion molecules, were also been found to be significantly

associated with imaging features in our cohort. Similar results

were reported in other studies as well, which reflected the

reliability of our results and the potential clinical value of

quantitative imaging features in characterizing the

proliferation and metabolism of breast tumor cells.

Prognostic analysis based on imaging features has always been

a research hotspot in radiomics and radiogenomics. In this work,

we identified eight enriched MRI-associated genes including

CHEK1, TTK, CDC45, BUB1B, PLK1, E2F1, CDC20, and

CDC25A from the cell cycle and further discovered that these

genes had the ability to predict the prognosis of BC in TCGA-

BRCA dataset. Our results revealed that these genes were not only

risk factors for BC but also related to DCE-MRI features. We

further developed the BC-8mriG as a prognosis indicator of BC,

and higher expression of BC-8mriG indicated a worse outcome.

Moreover, BC-8mriG displayed better prognostic capabilities in

multiple datasets compared with MammaPrint and Oncotype DX

gene assays in this study. A machine learning model was also built

for predicting the expression level of BC-8mriG based on imaging

features, providing a radiogenomics approach to analyzing
B C

A

FIGURE 6

The potential prognostic ability of DCE-MRI features. Forest plot by using multivariate Cox regression analysis indicates that BIF3 and BIF4 were
risk factors of BC (A), and the Kaplan–Meier plots display the DFS differences between high and low MRI risk score BC samples in the validation
and discovery cohorts (B, C). DCE, dynamic contrast enhanced; BC, breast cancer; DFS, disease-free survival.
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prognosis non-invasively. In addition, we directly assessed the

prognostic ability of important DCE-MRI features and noted their

clinical value as independent prognostic indicators.

Molecular heterogeneity analysis greatly improved the

treatment outcome of BC. Many studies have tried to establish

machine learning models based on imaging features to predict

clinical receptors and IHC subtypes (26–30). However, no

similar research published the PAM50 subtypes. Therefore,

not only receptor status and IHC subtypes but also PAM50

subtypes were modeled in this work. The performance of

machine learning models was evaluated in two independent

datasets, and our results were comparable to other studies. Four

different machine learning algorithms were used, with SVM

performing best overall. This may be due to SVM, which is

known as a powerful tool for using different kernels for

classification and regression analysis in a small-size dataset,

and especially SVM can model the non-linear decision

boundary and is robust against overfitting during training. To

our knowledge, this is the first study to use DCE-MRI features to

predict the PAM50 subtypes and to validate them in an external

dataset, which may provide support for BC diagnosis.

Compared with previous radiogenomics studies, although our

work overcame a few shortcomings, it still had some limitations

(56, 66, 67). First, we used two radiogenomics cohorts of BC: one

was a local single-center dataset for discovery (n = 174) and

another was a public multi-center dataset for validation (n = 72).

Although our data size had increased and used an independent

validation dataset, the generalization ability of revealed

associations and prediction models still needed to be verified in

a larger multi-center cohort. In addition, the performance of our

models still needed to be improved in the future, especially for the

prediction of PAM50 intrinsic subtypes, and there was also a

requirement to develop a well-performed PAM50 multi-classified

predictor. The establishment of robust and reproducible

radiomics-genomics associations was an important bottleneck

hindering the clinical application of radiogenomics. Second,

although we made some efforts to reduce the systematic bias in

imaging and sequencing data, such as N4 bias correction for 3T-

MRI data and voxel normalization, systemic differences in this

work still existed as the images of the validation cohort were

generated by different manufacturers in 1.5 T, which might result

in the relatively poor performance of models in the validation

dataset. Third, we used manual segmentation for regions of

interest, which was a time-consuming and labor-intensive

approach, and the high-throughput imaging features were

abstract, leading to the interpretability lack for the majority of

features. Deep learning-based radiogenomics analysis may be a

promising way in future works (68–70). Furthermore, although

we found some genes with prognostic value based on the

association of imaging features and gene expression profiles, the

direct prognostic prediction of imaging features did not perform

very well. We are looking forward to analyzing the prognostic

value of radiomics features in BC by using new and larger datasets
Frontiers in Oncology 13
in the next step, and we also hope to expand the use of radiomics

features in future work, particularly in the assessment

treatment responses.
Conclusions

In this work, we conducted BC radiogenomics analysis based

on DCE-MRI and RNA-seq data of 246 patients from multiple

centers. Reliable associations between DCE-MRI features and

gene expression profiles were identified and validated, and the

cell cycle pathway was found to be the most related to radiomics

features. Based on the associations, a radiogenomics prognostic

signature including eight genes was developed and performed

well in multiple datasets. By using machine learning analysis, we

further established radiomics-based models to predict the

clinical receptors, PAM50 subtypes, and prognostic signatures

in BC. Despite the good performance of our models, there is still

a need to improve model performance and generalization to

meet clinical needs. In addition, our results suggested that DCE-

MRI features were potential biomarkers of BC outcomes, which

still need to be further revealed in future works.
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Radiomic differentiation of breast cancer molecular subtypes using pre-operative
breast imaging – a systematic review and meta-analysis. Eur J Radiol (2021)
144:109996. doi: 10.1016/j.ejrad.2021.109996

34. Park H, Lim Y, Ko ES, Cho H-H, Lee JE, Han B-K, et al. Radiomics signature
on magnetic resonance imaging: Association with disease-free survival in patients
with invasive breast cancer. Clin Cancer Res (2018) 24(19):4705. doi: 10.1158/1078-
0432.CCR-17-3783

35. Yu Y, Tan Y, Xie C, Hu Q, Ouyang J, Chen Y, et al. Development and
validation of a preoperative magnetic resonance imaging radiomics-based
signature to predict axillary lymph node metastasis and disease-free survival in
patients with early-stage breast cancer. JAMA Netw Open (2020) 3(12):e2028086.
doi: 10.1001/jamanetworkopen.2020.28086

36. Fan M, Cui Y, You C, Liu L, Gu Y, Peng W, et al. Radiogenomic signatures
of oncotype DX recurrence score enable prediction of survival in estrogen
receptor–positive breast cancer: A multicohort study. Radiology (2021)
302:210738. doi: 10.1148/radiol.2021210738

37. Yu Y, He Z, Ouyang J, Tan Y, Chen Y, Gu Y, et al. Magnetic resonance
imaging radiomics predicts preoperative axillary lymph node metastasis to support
surgical decisions and is associated with tumor microenvironment in invasive
breast cancer: A machine learning, multicenter study. EBioMedicine (2021) 69. doi:
10.1016/j.ebiom.2021.103460

38. Grimm LJ. Breast MRI radiogenomics: Current status and research
implications. J Magnet Reson Imag (2016) 43(6):1269–78. doi: 10.1002/jmri.25116
Frontiers in Oncology 15
39. Tustison NJ, Avants BB, Cook PA, Zheng Y, Egan A, Yushkevich PA, et al.
N4ITK: Improved N3 bias correction. IEEE Trans Med Imag (2010) 29(6):1310–20.
doi: 10.1109/TMI.2010.2046908

40. van Griethuysen JJM, Fedorov A, Parmar C, Hosny A, Aucoin N, Narayan
V, et al. Computational radiomics system to decode the radiographic phenotype.
Cancer Res (2017) 77(21):e104. doi: 10.1158/0008-5472.CAN-17-0339

41. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for
illumina sequence data. Bioinformatics (2014) 30(15):2114–20. doi: 10.1093/
bioinformatics/btu170

42. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR:
ultrafast universal RNA-seq aligner. Bioinformatics (2013) 29(1):15–21. doi:
10.1093/bioinformatics/bts635

43. Anders S, Pyl PT, Huber W. HTSeq–a Python framework to work with
high-throughput sequencing data. Bioinformatics (2015) 31(2):166–9. doi: 10.1093/
bioinformatics/btu638

44. Gendoo DMA, Ratanasirigulchai N, Schröder MS, Paré L, Parker JS, Prat A,
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