18 research outputs found

    CYP-omega-hydroxylation-dependent metabolites of arachidonic acid inhibit the basolateral 10pS chloride channel in the rat thick ascending limb

    Get PDF
    Metabolites of arachidonic acid influence sodium chloride (NaCl) transport in the thick ascending limb. Because a 10pS Cl channel is the major type of chloride channel in the basolateral membrane of this nephron segment, we explored the effect of arachidonic acid on this channel in cell-attached patches. Addition of 5μmol arachidonic acid significantly decreased channel activity (a product of channel number and open probability) while linoleic acid had no effect. To determine if this was mediated by acachidonic acid per se or by its metabolites, we measured channel activity in the presence of the cyclooxygenase inhibitor indomethacin, the selective lipoxygenase inhibitor nordihydroguaiaretic acid, and the cytochrome P-450 (CYP)-ω-hydroxylation inhibitor 17-octadecynoic acid. Neither cyclooxygenase nor lipoxygenase inhibition had an effect on basal chloride channel activity; further they failed to abolish the inhibitory effect of arachidonate on the 10pS channel. However, inhibition of CYP-ω-hydroxylation completely abolished the effect of arachidonic acid. The similarity of the effects of 20-hydroxyeicosatetraenoic acid (20-HETE) and arachidonic acid suggests that the effect of arachidonic acid was mediated by CYP-ω-hydroxylation-dependent metabolites. We conclude that arachidonic acid inhibits the 10pS chloride channel in the basolateral membrane of the medullary thick ascending limb, an effect mediated by the CYP-ω-hydroxylation-dependent metabolite 20-HETE

    The Range Contraction and Future Conservation of Green Peafowl (Pavo muticus) in China

    No full text
    The Green Peafowl (Pavo muticus) is vulnerable to anthropogenic pressures and has undergone an extensive decline through much of its range in Southeast Asia. However, little is known about the changing distribution of Green Peafowl in China through historical periods. We described a 5000–6000 years distribution change of Green Peafowl in China by using historical archives. We examined the present distributions of Green Peafowl by using camera traps and transect surveys and predicted the suitable habitat to support future conservation planning for this species. Although Green Peafowl was once widely distributed across China, the species experienced a southward range retreat over the past 5000–6000 years and is now restricted to a small part of Yunnan. The results of prediction from maximum entropy modeling (MaxEnt) showed that the size of suitable habitat of Green Peafowl in Yunnan was 17,132 km2. The suitable habitat concentrated in nine prefectures of Yunnan and Pu’er, Chuxiong, and Yuxi accounted for 48.64%, 27.39% and 15.83%, respectively. These results suggest that central Yunnan can cover most of the current larger and more contiguous populations of Green Peafowl in China and should be protected. Moreover, some areas in southern Yunnan, such as Xishuangbanna, can be a candidate for reestablishing populations, given that the species disappeared in this region less than 20 years ago and has a large remaining habitat

    Stimulation of A2a adenosine receptor abolishes the inhibitory effect of arachidonic acid on the basolateral 50-pS K channel in the thick ascending limb

    No full text
    The basolateral 50-pS K channels are stimulated by a cAMP-dependent pathway and inhibited by cytochrome P-450-omega-hydroxylase-dependent metabolism of arachidonic acid (AA) in the rat thick ascending limb (TAL). We now used the patch-clamp technique to examine whether stimulation of adenosine A2a receptor modulates the inhibitory effect of AA on the basolateral 50-pS K channels in the medullary TAL. Stimulation of adenosine A2a receptor with CGS-21680 or inhibition of phospholipase A2 (PLA2) with AACOCF3 increased the 50-pS K channel activity in the TAL. Western blot demonstrated that application of CGS-21680 decreased the phosphorylation of PLA2 at serine residue 505, an indication of inhibiting PLA2 activity. In the presence of CGS-21680, inhibition of PLA2 had no further effect on the basolateral 50-pS K channels. The possibility that CGS-21680-induced stimulation of the basolateral 50-pS K channels was partially achieved by inhibition of PLA2 in the TAL was also supported by the observation that CGS-21680 had no additional effect in the presence of AACOCF3. Moreover, stimulation of adenosine A2a receptor with CGS-21680 also abolished the inhibitory effect of AA and 20-hydroxyeicosatetraenoic acid (20-HETE) on the 50-pS K channels. The effect of CGS-21680 on AA and 20-HETE-mediated inhibition of the 50-pS K channels was mediated by cAMP because application of membrane-permeable cAMP analog, dibutyryl-cAMP, not only increased the 50-pS K channel activity but also abolished the inhibitory effect of AA and 20-HETE. We conclude that stimulation of adenosine A2a receptor increased the 50-pS K channel activity in the TAL, an effect that is achieved by suppression of PLA2 activity and 20-HETE-induced inhibition

    A hypothalamic novelty signal modulates hippocampal memory

    No full text
    International audienceThe ability to recognize information that is incongruous with previous experience is critical for survival. Novelty signals have therefore evolved in the mammalian brain to enhance attention, perception and memory1,2. Although the importance of regions such as the ventral tegmental area3,4 and locus coeruleus5 in broadly signalling novelty is well-established, these diffuse monoaminergic transmitters have yet to be shown to convey specific information on the type of stimuli that drive them. Whether distinct types of novelty, such as contextual and social novelty, are differently processed and routed in the brain is unknown. Here we identify the supramammillary nucleus (SuM) as a novelty hub in the hypothalamus6. The SuM region is unique in that it not only responds broadly to novel stimuli, but also segregates and selectively routes different types of information to discrete cortical targets-the dentate gyrus and CA2 fields of the hippocampus-for the modulation of mnemonic processing. Using a new transgenic mouse line, SuM-Cre, we found that SuM neurons that project to the dentate gyrus are activated by contextual novelty, whereas the SuM-CA2 circuit is preferentially activated by novel social encounters. Circuit-based manipulation showed that divergent novelty channelling in these projections modifies hippocampal contextual or social memory. This content-specific routing of novelty signals represents a previously unknown mechanism that enables the hypothalamus to flexibly modulate select components of cognition
    corecore