86 research outputs found

    GENETIC DIVERSITY AND SYMPTOM SEVERITY DETERMINANTS OF BEAN POD MOTTLE VIRUS

    Get PDF
    Bean pod mottle virus (BPMV), a member of the genus Comovirus in the family Comoviridae, is widespread in the major soybean-growing areas in the United States. Soybean yield losses of 10-40% have been reported as a consequence of BPMV infection. The complete nucleotide sequences of two strains, K-Ha1 and K-Ho1, were determined. Field isolates of BPMV were classified into two distinct subgroups (I and II) based on slot blot hybridization and sequence analyses. Full-length cDNA clones from which infectious transcripts can be produced were constructed for strains K-G7, K-Ho1 and K-Ha1. Whereas strains K-Ha1 and K-G7 induced mild or moderate symptoms in infected soybean plants, strain K-Ho1 produced very severe symptoms. Symptom severity was mapped to RNA1. Chimeric RNA1 constructs were generated by exchanging full or partial coding regions of the five RNA1-encoded mature proteins between the full-length cDNA clones of the three RNA1s and the resultant transcripts were inoculated onto soybean. The results showed that the coding regions of the protease co-factor (Co-pro) and the putative helicase (Hel) are determinants of symptom severity. Although symptom severity correlated well with accumulation of viral RNA, neither the Co-pro nor Hel protein could be demonstrated as a suppressor of RNA silencing. Furthermore, separate expression of the Co-pro or Hel proteins from a PVX vector induced necrosis on the inoculated leaves of Nicotiana benthamiana. Characterization of BPMV K-Ho1 indicated that it is a diploid reassortant, containing two distinct types of RNA1s and one type of RNA2. Examination of field isolates from various locations in the United States and Canada revealed that diploid reassortants are of frequent occurrence in natural populations of BPMV. The vary severe symptoms induced by BPMV K-Ho1 can be mimicked by inoculation of plants with a mixture of RNA1 transcripts from two distinct strain subgroups and RNA2 transcript from either subgroup. Plants inoculated with a mixture of transcripts containing two types of RNA1 from the same strain subgroup did not produce very severe symptoms. These are due to interactions between two distinct types of RNA1s. At present, no soybean cultivars with resistance to BPMV are commercially available. Therefore, the feasibility of cross protection as an alternative disease management strategy was studied. Two mild strains of BPMV (K-Da1 and K-Ha1), belonging to subgroup II, were tested for their ability to protect infected plants against a severe strain (K-Ho1). Inoculation of the soybean cultivar Essex on the primary leaves with either of the two mild strains conferred complete protection against challenge inoculation with the severe strain K-Ho1, regardless of the timing of challenge inoculation. Cross-protection was evident regardless of whether virions or BPMV-RNA were used as inocula. Cross protection was independent of the soybean cultivar used and method of virus inoculation, sap-inoculation or by the bean leaf beetle, vector of BPMV. Protection was complete and durable

    A unique regulatory phase of DNA methylation in the early mammalian embryo

    Get PDF
    DNA methylation is highly dynamic during mammalian embryogenesis. It is broadly accepted that the paternal genome is actively depleted of 5-methylcytosine at fertilization, followed by passive loss that reaches a minimum at the blastocyst stage. However, this model is based on limited data, and so far no base-resolution maps exist to support and refine it. Here we generate genome-scale DNA methylation maps in mouse gametes and from the zygote through post-implantation. We find that the oocyte already exhibits global hypomethylation, particularly at specific families of long interspersed element 1 and long terminal repeat retroelements, which are disparately methylated between gametes and have lower methylation values in the zygote than in sperm. Surprisingly, the oocyte contributes a unique set of differentially methylated regions (DMRs)—including many CpG island promoters—that are maintained in the early embryo but are lost upon specification and absent from somatic cells. In contrast, sperm-contributed DMRs are largely intergenic and become hypermethylated after the blastocyst stage. Our data provide a genome-scale, base-resolution timeline of DNA methylation in the pre-specified embryo, when this epigenetic modification is most dynamic, before returning to the canonical somatic pattern.Burroughs Wellcome (Career Award)National Institutes of Health (U.S.) (5RC1AA019317)National Institutes of Health (U.S.) (U01ES017155)National Institutes of Health (U.S.) (P01GM099117)National Human Genome Research Institute (U.S.) (1P50HG006193-01

    Genomic Distribution and Inter-Sample Variation of Non-CpG Methylation across Human Cell Types

    Get PDF
    DNA methylation plays an important role in development and disease. The primary sites of DNA methylation in vertebrates are cytosines in the CpG dinucleotide context, which account for roughly three quarters of the total DNA methylation content in human and mouse cells. While the genomic distribution, inter-individual stability, and functional role of CpG methylation are reasonably well understood, little is known about DNA methylation targeting CpA, CpT, and CpC (non-CpG) dinucleotides. Here we report a comprehensive analysis of non-CpG methylation in 76 genome-scale DNA methylation maps across pluripotent and differentiated human cell types. We confirm non-CpG methylation to be predominantly present in pluripotent cell types and observe a decrease upon differentiation and near complete absence in various somatic cell types. Although no function has been assigned to it in pluripotency, our data highlight that non-CpG methylation patterns reappear upon iPS cell reprogramming. Intriguingly, the patterns are highly variable and show little conservation between different pluripotent cell lines. We find a strong correlation of non-CpG methylation and DNMT3 expression levels while showing statistical independence of non-CpG methylation from pluripotency associated gene expression. In line with these findings, we show that knockdown of DNMTA and DNMT3B in hESCs results in a global reduction of non-CpG methylation. Finally, non-CpG methylation appears to be spatially correlated with CpG methylation. In summary these results contribute further to our understanding of cytosine methylation patterns in human cells using a large representative sample set

    Genome-wide Map of Quantified Epigenetic Changes during In vitro Chondrogenic Differentiation of Primary Human Mesenchymal Stem Cells

    Get PDF
    Background: For safe clinical application of engineered cartilage made from mesenchymal stem cells (MSCs), molecular mechanisms for chondrogenic differentiation must be known in detail. Changes in gene expression and extracellular matrix synthesis have been extensively studied, but the epigenomic modifications underlying these changes have not been described. To this end we performed whole-genome chromatin immunoprecipitation and deep sequencing to quantify six histone modifications, reduced representation bisulphite sequencing to quantify DNA methylation and mRNA microarrays to quantify gene expression before and after 7 days of chondrogenic differentiation of MSCs in an alginate scaffold. To add to the clinical relevance of our observations, the study is based on primary bone marrow-derived MSCs from four donors, allowing us to investigate inter-individual variations. Results: We see two levels of relationship between epigenetic marking and gene expression. First, a large number of genes ontogenetically linked to MSC properties and the musculoskeletal system are epigenetically prepatterned by moderate changes in H3K4me3 and H3K9ac near transcription start sites. Most of these genes remain transcriptionally unaltered. Second, transcriptionally upregulated genes, more closely associated with chondrogenesis, are marked by H3K36me3 in gene bodies, highly increased H3K4me3 and H3K9ac on promoters and 5' end of genes, and increased H3K27ac and H3K4me1 marking in at least one enhancer region per upregulated gene. Within the 7-day time frame, changes in promoter DNA methylation do not correlate significantly with changes in gene expression. Inter-donor variability analysis shows high level of similarity between the donors for this data set. Conclusions: Histone modifications, rather than DNA methylation, provide the primary epigenetic control of early differentiation of MSCs towards the chondrogenic lineage.Stem Cell and Regenerative Biolog

    LKB1 loss links serine metabolism to DNA methylation and tumorigenesis

    Get PDF
    Intermediary metabolism generates substrates for chromatin modification, enabling the potential coupling of metabolic and epigenetic states. Here we identify a network linking metabolic and epigenetic alterations that is central to oncogenic transformation downstream of the liver kinase B1 (LKB1, also known as STK11) tumour suppressor, an integrator of nutrient availability, metabolism and growth. By developing genetically engineered mouse models and primary pancreatic epithelial cells, and employing transcriptional, proteomics, and metabolic analyses, we find that oncogenic cooperation between LKB1 loss and KRAS activation is fuelled by pronounced mTOR-dependent induction of the serine-glycine-one-carbon pathway coupled to S-adenosylmethionine generation. At the same time, DNA methyltransferases are upregulated, leading to elevation in DNA methylation with particular enrichment at retrotransposon elements associated with their transcriptional silencing. Correspondingly, LKB1 deficiency sensitizes cells and tumours to inhibition of serine biosynthesis and DNA methylation. Thus, we define a hypermetabolic state that incites changes in the epigenetic landscape to support tumorigenic growth of LKB1-mutant cells, while resulting in potential therapeutic vulnerabilities
    • …
    corecore