497 research outputs found
Non-linear spectroscopy of rubidium: An undergraduate experiment
In this paper, we describe two complementary non-linear spectroscopy methods
which both allow to achieve Doppler-free spectra of atomic gases. First,
saturated absorption spectroscopy is used to investigate the structure of the
transition in rubidium. Using a slightly
modified experimental setup, Doppler-free two-photon absorption spectroscopy is
then performed on the transition in
rubidium, leading to accurate measurements of the hyperfine structure of the
energy level. In addition, electric dipole selection rules of
the two-photon transition are investigated, first by modifying the polarization
of the excitation laser, and then by measuring two-photon absorption spectra
when a magnetic field is applied close to the rubidium vapor. All experiments
are performed with the same grating-feedback laser diode, providing an
opportunity to compare different high resolution spectroscopy methods using a
single experimental setup. Such experiments may acquaint students with quantum
mechanics selection rules, atomic spectra and Zeeman effect.Comment: 16 pages, 8 figure
Directed diffusion of reconstituting dimers
We discuss dynamical aspects of an asymmetric version of assisted diffusion
of hard core particles on a ring studied by G. I. Menon {\it et al.} in J. Stat
Phys. {\bf 86}, 1237 (1997). The asymmetry brings in phenomena like kinematic
waves and effects of the Kardar-Parisi-Zhang nonlinearity, which combine with
the feature of strongly broken ergodicity, a characteristic of the model. A
central role is played by a single nonlocal invariant, the irreducible string,
whose interplay with the driven motion of reconstituting dimers, arising from
the assisted hopping, determines the asymptotic dynamics and scaling regimes.
These are investigated both analytically and numerically through
sector-dependent mappings to the asymmetric simple exclusion process.Comment: 10 pages, 6 figures. Slight corrections, one added reference. To
appear in J. Phys. Cond. Matt. (2007). Special issue on chemical kinetic
Exact multipoint and multitime correlation functions of a one-dimensional model of adsorption and evaporation of dimers
In this work, we provide a method which allows to compute exactly the
multipoint and multi-time correlation functions of a one-dimensional stochastic
model of dimer adsorption-evaporation with random (uncorrelated) initial
states.
In particular explicit expressions of the two-point
noninstantaneous/instantaneous correlation functions are obtained. The
long-time behavior of these expressions is discussed in details and in various
physical regimes.Comment: 6 pages, no figur
Rayleigh scattering and atomic dynamics in dissipative optical lattices
We investigate Rayleigh scattering in dissipative optical lattices. In particular, following recent proposals [S. Guibal et al., Phys. Rev. Lett. 78, 4709 (1997); C. Jurczak et al., Phys. Rev. Lett. 77, 1727 (1996)], we study whether the Rayleigh resonance originates from the diffraction on a density grating and is therefore a probe of transport of atoms in optical lattices. It turns out that this is not the case: the Rayleigh line is instead a measure of the cooling rate, while spatial diffusion contributes to the scattering spectrum with a much broader resonance
Beam splitting and Hong-Ou-Mandel interference for stored light
Storing and release of a quantum light pulse in a medium of atoms in the
tripod configuration are studied. Two complementary sets of control fields are
defined, which lead to independent and complete photon release at two stages.
The system constitutes a new kind of a flexible beam splitter in which the
input and output ports concern photons of the same direction but well separated
in time. A new version of Hong-Ou-Mandel interference is discussed.Comment: 8 pages, 3 figure
Quantum computing with spatially delocalized qubits
We analyze the operation of quantum gates for neutral atoms with qubits that
are delocalized in space, i.e., the computational basis states are defined by
the presence of a neutral atom in the ground state of one out of two trapping
potentials. The implementation of single qubit gates as well as a controlled
phase gate between two qubits is discussed and explicit calculations are
presented for rubidium atoms in optical microtraps. Furthermore, we show how
multi-qubit highly entangled states can be created in this scheme.Comment: 4 pages, 4 figure
Diffusion-limited Reactions of hard-core Particles in one-dimension
We investigate three different methods to tackle the problem of
diffusion-limited reactions (annihilation) of hard-core classical particles in
one dimension. We first extend an approach devised by Lushnikov and calculate
for a single species the asymptotic long-time and/or large distance behavior of
the two-point correlation function. Based on a work by Grynberg et al., which
was developed to treat stochastic adsorption-desorption models, we provide in a
second step the exact two-point correlation function (both for one and
two-time) of Lushnikov's model. We then propose a new formulation of the
problem in terms of path integrals for pseudo-fermions. This formalism can be
used to advantage in the multi-species case, specially when applying
perturbative renormalization group techniques.Comment: 15 pages, no figure, to appear in PR
Generating Entangled Microwave Radiation Over Two Transmission Lines
Using a superconducting circuit, the Josephson mixer, we demonstrate the
first experimental realization of spatially separated two-mode squeezed states
of microwave light. Driven by a pump tone, a first Josephson mixer generates,
out of quantum vacuum, a pair of entangled fields at different frequencies on
separate transmission lines. A second mixer, driven by a -phase shifted
copy of the first pump tone, recombines and disentangles the two fields. The
resulting output noise level is measured to be lower than for vacuum state at
the input of the second mixer, an unambiguous proof of entanglement. Moreover,
the output noise level provides a direct, quantitative measure of entanglement,
leading here to the demonstration of 6 Mebit.s (Mega entangled bits per
second) generated by the first mixer.Comment: 5 pages, 4 figures. Supplementary Information can be found here as an
ancillary fil
Stochastic resonance in periodic potentials: realization in a dissipative optical lattice
We have observed the phenomenon of stochastic resonance on the Brillouin
propagation modes of a dissipative optical lattice. Such a mode has been
excited by applying a moving potential modulation with phase velocity equal to
the velocity of the mode. Its amplitude has been characterized by the
center-of-mass (CM) velocity of the atomic cloud. At Brillouin resonance, we
studied the CM-velocity as a function of the optical pumping rate at a given
depth of the potential wells. We have observed a resonant dependence of the CM
velocity on the optical pumping rate, corresponding to the noise strength. This
corresponds to the experimental observation of stochastic resonance in a
periodic potential in the low-damping regime
- …