436 research outputs found

    Contribution to fusion research from IAEA coordinated research projects and joint experiments

    Get PDF
    The paper presents objectives and activities of IAEA Coordinated Research Projects 'Conceptual development of steady-state compact fusion neutron sources' and 'Utilisation of a network of small magnetic confinement fusion devices for mainstream fusion research'. The background and main projects of the CRP on FNS are described in detail, as this is a new activity at IAEA. Recent activities of the second CRP, which continues activities of previous CRPs, are overviewed

    Effect of the external helical fields on the plasma boundary shape in JET

    Get PDF
    Externally applied helical magnetic fields are now often used on tokamaks for various purposes. This paper presents results of studies of the effect of the external fields, produced by the error field correction coils (EFCCs) on JET, on the plasma boundary shape. Significant 3D distortions, predicted in the previous studies, have been confirmed using upgraded magnetic diagnostics and high-resolution Thomson scattering diagnostics. A simple method of estimating the edge distortion using magnetic diagnostics calibrated on the kinetic measurements is proposed and demonstrated

    Effect of kinetic resonances on the stability of Resistive Wall Mode in Reversed Field Pinch

    Get PDF
    The kinetic effects, due to the mode resonance with thermal particle drift motions in the reversed field pinch (RFP) plasmas, are numerically investigated for the stability of the resistive wall mode, using a non-perturbative MHD-kinetic hybrid formulation. The kinetic effects are generally found too weak to substantially change the mode growth rate, or the stability margin, re-enforcing the fact that the ideal MHD model is rather adequate for describing the RWM physics in RFP experiments.Comment: Submitted to: Plasma Phys. Control. Fusio

    High power heating of magnetic reconnection in merging tokamak experimentsa)

    No full text
    Significant ion/electron heating of magnetic reconnection up to 1.2 keV was documented in two spherical tokamakplasma merging experiment on MAST with the significantly large Reynolds number R∼10⁵. Measured 1D/2D contours of ion and electron temperatures reveal clearly energy-conversion mechanisms of magnetic reconnection: huge outflow heating of ions in the downstream and localized heating of electrons at the X-point. Ions are accelerated up to the order of poloidal Alfven speed in the reconnection outflow region and are thermalized by fast shock-like density pileups formed in the downstreams, in agreement with recent solar satellite observations and PIC simulation results. The magnetic reconnection efficiently converts the reconnecting (poloidal) magnetic energy mostly into ion thermal energy through the outflow, causing the reconnectionheating energy proportional to square of the reconnecting (poloidal) magnetic field Brec²  ∼  Bp². The guide toroidal field Bt does not affect the bulk heating of ions and electrons, probably because the reconnection/outflow speeds are determined mostly by the external driven inflow by the help of another fast reconnection mechanism: intermittent sheet ejection. The localized electron heating at the X-point increases sharply with the guide toroidal field Bt, probably because the toroidal field increases electron confinement and acceleration length along the X-line. 2D measurements of magnetic field and temperatures in the TS-3 tokamak merging experiment also reveal the detailed reconnectionheating mechanisms mentioned above. The high-power heating of tokamak merging is useful not only for laboratory study of reconnection but also for economical startup and heating of tokamakplasmas. The MAST/TS-3 tokamak merging with Bp > 0.4 T will enables us to heat the plasma to the alpha heating regime: Ti > 5 keV without using any additional heating facility.This work was supported by a Grant-in-Aid for Scientific Research (A) No 22246119 and JSPS Core-to-Core program No 22001, the JSPS Institutional Program for Young Researcher Overseas Visits and NIFS Collaboration Research Programs (NIFS11KNWS001, NIFS12KLEH024, NIFS11KUTR060). This work was funded partly by the RCUK Energy Program under Grant No. EP/I501045 and the European Communities under the contract of CCFE

    Measurement and physical interpretation of the mean motion of turbulent density patterns detected by the BES system on MAST

    Full text link
    The mean motion of turbulent patterns detected by a two-dimensional (2D) beam emission spectroscopy (BES) diagnostic on the Mega Amp Spherical Tokamak (MAST) is determined using a cross-correlation time delay (CCTD) method. Statistical reliability of the method is studied by means of synthetic data analysis. The experimental measurements on MAST indicate that the apparent mean poloidal motion of the turbulent density patterns in the lab frame arises because the longest correlation direction of the patterns (parallel to the local background magnetic fields) is not parallel to the direction of the fastest mean plasma flows (usually toroidal when strong neutral beam injection is present). The experimental measurements are consistent with the mean motion of plasma being toroidal. The sum of all other contributions (mean poloidal plasma flow, phase velocity of the density patterns in the plasma frame, non-linear effects, etc.) to the apparent mean poloidal velocity of the density patterns is found to be negligible. These results hold in all investigated L-mode, H-mode and internal transport barrier (ITB) discharges. The one exception is a high-poloidal-beta (the ratio of the plasma pressure to the poloidal magnetic field energy density) discharge, where a large magnetic island exists. In this case BES detects very little motion. This effect is currently theoretically unexplained.Comment: 28 pages, 15 figures, submitted to PPC

    Electromagnetic VDE and Disruption Analysis in the SMART Tokamak

    Get PDF
    The SMall aspect ratio tokamak (SMART) is a new spherical device, that is, currently being constructed at the University of Seville. The operation of SMART will cover three phases reaching a maximum plasma current ( IPI_{P} ) of 400 kA, a toroidal magnetic field ( BTB_{T} ) of 1 T, and a pulse length of 500 ms. Such operating conditions present notable challenges to the design and verification of SMARTs structural integrity during normal and off-normal operations. In particular, vertical displacement events (VDEs) and disruptions (Boozer, 2012) are most important as they can cause severe damage to the components directly exposed to the plasma due to the significant electromagnetic (EM) and thermal loads delivered over ms timescales. As a consequence, a detailed evaluation of the EM loads during plasma disruptions is mandatory for the correct dimensioning of the machine, in particular the vacuum vessel. The EM loads are mainly produced by: the poloidal flux variation during the thermal and current quench, halo currents (Boozer, 2013) that flow into the vacuum vessel and interacts with the toroidal magnetic field; and toroidal flux variation during the thermal and current quench. We present, here, the EM and structural analysis performed for the design of SMART. The modeling has been carried out by combining equilibrium scenarios obtained through the FIESTA code (Cunningham, 2013), estimating VDE and disruption time-scales by comparing other machines (Chen et al. 2015), (Hender et al. 2007), and (Bachmann et al. 2011) and computing EM forces through a finite element model (FEM) taking into account the effects of both eddy and halo currents (Roccella et al. 2008), (Titus et al. 2011), and (Ortwein et al. 2020). Finally, the structural assessment of the vacuum vessel is performed in order to verify its integrity during normal and off-normal events in phase 3.10.13039/501100000780-Fondo Europeo de Desarollo Regional (FEDER) through the European Commission (Grant Number: IE17-5670 and US-15570
    corecore