63 research outputs found

    Synthesis, structure and power of systolic computations

    Get PDF
    AbstractA variety of problems related to systolic architectures, systems, models and computations are discussed. The emphases are on theoretical problems of a broader interest. Main motivations and interesting/important applications are also presented. The first part is devoted to problems related to synthesis, transformations and simulations of systolic systems and architectures. In the second part, the power and structure of tree and linear array computations are studied in detail. The goal is to survey main research directions, problems, methods and techniques in not too formal a way

    Generalized context-free grammars

    Get PDF

    Generalizations of the distributed Deutsch-Jozsa promise problem

    Full text link
    In the {\em distributed Deutsch-Jozsa promise problem}, two parties are to determine whether their respective strings x,y{0,1}nx,y\in\{0,1\}^n are at the {\em Hamming distance} H(x,y)=0H(x,y)=0 or H(x,y)=n2H(x,y)=\frac{n}{2}. Buhrman et al. (STOC' 98) proved that the exact {\em quantum communication complexity} of this problem is O(logn){\bf O}(\log {n}) while the {\em deterministic communication complexity} is Ω(n){\bf \Omega}(n). This was the first impressive (exponential) gap between quantum and classical communication complexity. In this paper, we generalize the above distributed Deutsch-Jozsa promise problem to determine, for any fixed n2kn\frac{n}{2}\leq k\leq n, whether H(x,y)=0H(x,y)=0 or H(x,y)=kH(x,y)= k, and show that an exponential gap between exact quantum and deterministic communication complexity still holds if kk is an even such that 12nk<(1λ)n\frac{1}{2}n\leq k<(1-\lambda) n, where 0<λ<120< \lambda<\frac{1}{2} is given. We also deal with a promise version of the well-known {\em disjointness} problem and show also that for this promise problem there exists an exponential gap between quantum (and also probabilistic) communication complexity and deterministic communication complexity of the promise version of such a disjointness problem. Finally, some applications to quantum, probabilistic and deterministic finite automata of the results obtained are demonstrated.Comment: we correct some errors of and improve the presentation the previous version. arXiv admin note: substantial text overlap with arXiv:1309.773

    Potential of quantum finite automata with exact acceptance

    Full text link
    The potential of the exact quantum information processing is an interesting, important and intriguing issue. For examples, it has been believed that quantum tools can provide significant, that is larger than polynomial, advantages in the case of exact quantum computation only, or mainly, for problems with very special structures. We will show that this is not the case. In this paper the potential of quantum finite automata producing outcomes not only with a (high) probability, but with certainty (so called exactly) is explored in the context of their uses for solving promise problems and with respect to the size of automata. It is shown that for solving particular classes {An}n=1\{A^n\}_{n=1}^{\infty} of promise problems, even those without some very special structure, that succinctness of the exact quantum finite automata under consideration, with respect to the number of (basis) states, can be very small (and constant) though it grows proportional to nn in the case deterministic finite automata (DFAs) of the same power are used. This is here demonstrated also for the case that the component languages of the promise problems solvable by DFAs are non-regular. The method used can be applied in finding more exact quantum finite automata or quantum algorithms for other promise problems.Comment: We have improved the presentation of the paper. Accepted to International Journal of Foundation of Computer Scienc

    On the state complexity of semi-quantum finite automata

    Full text link
    Some of the most interesting and important results concerning quantum finite automata are those showing that they can recognize certain languages with (much) less resources than corresponding classical finite automata \cite{Amb98,Amb09,AmYa11,Ber05,Fre09,Mer00,Mer01,Mer02,Yak10,ZhgQiu112,Zhg12}. This paper shows three results of such a type that are stronger in some sense than other ones because (a) they deal with models of quantum automata with very little quantumness (so-called semi-quantum one- and two-way automata with one qubit memory only); (b) differences, even comparing with probabilistic classical automata, are bigger than expected; (c) a trade-off between the number of classical and quantum basis states needed is demonstrated in one case and (d) languages (or the promise problem) used to show main results are very simple and often explored ones in automata theory or in communication complexity, with seemingly little structure that could be utilized.Comment: 19 pages. We improve (make stronger) the results in section

    From informatics to quantum informatics

    Get PDF
    Quantum phenomena exhibit a variety of weird, counter intuitive, puzzling, mysterious and even entertaining effects. Quantum information processing tries to make an effective use of these phenomena to design new quantum information processing and communication technology and also to get a better understanding of quantum and information processing worlds. During the recent years, exploration of the quantum information processing and communication science and technology got a significant momentum, and it has turned out quite clearly that paradigms, concepts, models, tools, methods and outcomes of informatics play by that a very important role. They not only help to solve problems quantum information processing and communication encounter, but they bring into these investigations a new quality, and to such an extend, that one can now acknowledge an emergence of a quantum informatics as of an important new area of fundamental science with contributions not only to quantum physics, but also to (classical) informatics itself. The main goal of this paper is to demonstrate the emergence of quantum informatics, as of a very fundamental, deep and broad science, its outcomes and especially its main new fascinating challenges, from informatics and physics point of view. Especially challenges in the search for new primitives, computation modes, new quality concerning efficiency and feasibility of computation and communication, new quality concerning quantum cryptographic protocols in a broad sense, and also in a very new and promising area of quantum formal systems for programming, semantics, reasoning and verification. The paper is targeted towards informaticians that are pedestrians in the mysterious quantum world, but would like to see what are new driving forces in informatics, where they drive us, why and how. In the paper, oriented towards broad audience, main mysteries, puzzles and specific features of quantum world are dealt with as well as basic models, laws, limitations, results and the state-of-the-art of quantum information processing and communication.4th IFIP International Conference on Theoretical Computer ScienceRed de Universidades con Carreras en Informática (RedUNCI

    State succinctness of two-way finite automata with quantum and classical states

    Full text link
    {\it Two-way quantum automata with quantum and classical states} (2QCFA) were introduced by Ambainis and Watrous in 2002. In this paper we study state succinctness of 2QCFA. For any mZ+m\in {\mathbb{Z}}^+ and any ϵ<1/2\epsilon<1/2, we show that: {enumerate} there is a promise problem Aeq(m)A^{eq}(m) which can be solved by a 2QCFA with one-sided error ϵ\epsilon in a polynomial expected running time with a constant number (that depends neither on mm nor on ε\varepsilon) of quantum states and O(log1ϵ)\mathbf{O}(\log{\frac{1}{\epsilon})} classical states, whereas the sizes of the corresponding {\it deterministic finite automata} (DFA), {\it two-way nondeterministic finite automata} (2NFA) and polynomial expected running time {\it two-way probabilistic finite automata} (2PFA) are at least 2m+22m+2, logm\sqrt{\log{m}}, and (logm)/b3\sqrt[3]{(\log m)/b}, respectively; there exists a language Ltwin(m)={wcww{a,b}}L^{twin}(m)=\{wcw| w\in\{a,b\}^*\} over the alphabet Σ={a,b,c}\Sigma=\{a,b,c\} which can be recognized by a 2QCFA with one-sided error ϵ\epsilon in an exponential expected running time with a constant number of quantum states and O(log1ϵ)\mathbf{O}(\log{\frac{1}{\epsilon})} classical states, whereas the sizes of the corresponding DFA, 2NFA and polynomial expected running time 2PFA are at least 2m2^m, m\sqrt{m}, and m/b3\sqrt[3]{m/b}, respectively; {enumerate} where bb is a constant.Comment: 26pages, comments and suggestions are welcom
    corecore