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Abstract. Quantum phenomena exhibit a variety of weird, counter-
intuitive, puzzling, mysterious and even entertaining effects. Quantum
information processing tries to make an effective use of these phenom-
ena to design new quantum information processing and communication
technology and also to get a better understanding of quantum and in-
formation processing worlds.
During the recent years, exploration of the quantum information pro-
cessing and communication science and technology got a significant mo-
mentum, and it has turned out quite clearly that paradigms, concepts,
models, tools, methods and outcomes of informatics play by that a very
important role. They not only help to solve problems quantum infor-
mation processing and communication encounter, but they bring into
these investigations a new quality, and to such an extend, that one can
now acknowledge an emergence of a quantum informatics as of an im-
portant new area of fundamental science with contributions not only to
quantum physics, but also to (classical) informatics itself.
The main goal of this paper is to demonstrate the emergence of quan-
tum informatics, as of a very fundamental, deep and broad science, its
outcomes and especially its main new fascinating challenges, from infor-
matics and physics point of view. Especially challenges in the search for
new primitives, computation modes, new quality concerning efficiency
and feasibility of computation and communication, new quality concern-
ing quantum cryptographic protocols in a broad sense, and also in a very
new and promising area of quantum formal systems for programming,
semantics, reasoning and verification.
The paper is targeted towards informaticians that are pedestrians in
the mysterious quantum world, but would like to see what are new
driving forces in informatics, where they drive us, why and how. In
the paper, oriented towards broad audience, main mysteries, puzzles
and specific features of quantum world are dealt with as well as basic
models, laws, limitations, results and the state-of-the-art of quantum
information processing and communication.

1 Introduction

In quantum computing we witness a merge of two arguably the most important
areas of science of 20th century: quantum physics and informatics. It would
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therefore be astonishing if such a merge would not shed new light on both of
them and would not bring new great discoveries. This merge is surely bringing
new aims, challenges and potentials for informatics and also new approaches to
explore quantum world. In spite of the fact that it is hard to predict particular
impacts of quantum computing on computing in general, it is quite safe to
expect that the merge will lead to important outcomes.

Since the very beginning of quantum mechanics, various its mysterious
and counterintuitive phenomena have been discovered, but science commu-
nity did not pay too large attention to them because they looked as inno-
cent features that largely exist due to our, still not perfect, mathematical
model/understanding of the quantum world, or as phenomena investigation
of which can be postponed. Randomness of quantum measurement and result-
ing collapse of the quantum state being measured, quantum entanglement and
non-locality in correlations exhibited due to it2, are perhaps the most puzzling
ones. Quantum counterfactual effects with its peculiar consequences3 are even
more weird phenomena.

In between, situation has radically changed. Quantum entanglement has
been shown to be useful to perform actions, as quantum teleportation (Bennett
et al, 1993), that is not possible in the classical world, to achieve in computation
the efficiency that seems to be impossible in the classical world, as Shor’s poly-
nomial time algorithms for factorization and discrete logarithms (Shor, 1994)),
to achieve level of security not possible in the classical world (for example for
classical keys generation (Ekert, 1991)), to increase exponentially efficiency of
communicating protocols (Raz, 1999), to introduce new important capacities
and to increase old capacities of quantum channels (see Gruska (1999-2005)
and Nielsen and Chuang (2000) for an overview, and so on. All that is still
only a small list of the success story of quantum entanglement that has been
experimentally demonstrated for distance of up to 50km using fiber (Marcikic
et al., 2004) and up to 13km over noisy ground atmosphere (see Peng at al.,
2004). It is, for example, believed, and expected by some, that quantum entan-

2 As formally defined later, entanglement of quantum states is defined using Hilbert
space formalism for quantum phenomena. However, the existence of non-local cor-
relations is an experimentally observed phenomenon and therefore independent of
the choice of formalism. At the moment, the only observed non-local correlations
are those exhibited by entangled states. This, however, does not exclude that some
other non-local correlations will be discovered.

3 The term counterfactual is usually used for things that might have happened, al-
though they did not really happened. An important point is that while classical
counterfactuals do not have physical consequences, quantum counterfactuals can
have surprisingly big consequences because the mere possibility that some quan-
tum event might have happened can change the probabilities of obtaining various
experimental outcomes. For example, it can be shown that a quantum computer
can provide the result of a computation without performing the computation pro-
vided it would provide the same result of computation by really performing the
computation (Mitchinson and Jozsa, 1999).
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glement will have also large practical impacts. For example, to increase quality
of measurements (see Childs et al. 1999).

To summarize, quantum entanglement is now considered as a new very im-
portant resource for quantum information processing and communication, a
resource that has, in addition, the following potentials (see also Gruska 1999-
2005, 2003):

– To provide a new gold mine for science and technology;
– To give an edge to quantum versus classical information processing and com-

munication.
– To help to understand better various important physical phenomena.

Surely, the most puzzling and powerful consequence of the existence of en-
tangled quantum states is non-locality their measurements exhibit. Namely, if
a set of particles is in an entangled state and one of the particles is measured,
then this measurement immediately influences/determines results of subsequent
measurements of other particles. There are therefore non-local correlations be-
tween results of the measurements of particles in an entangled state.

EPR−box

x y

ba

x = y implies a = b

Fig. 1. EPR-box

Quantum nonlocality, exhibited by the measurement of so-called EPR-state
1√
2
(|00〉 + |11〉), can be modelled by so-called EPR-box shown in Figure 1.

There are two parties involved, A and B, much separated by space, that do not
communicate with each other, and an imaginary box with two input-output
ports, each for one of the parties. If the party A puts in its input port a, it
gets out, immediately, an output x, and if the party B puts in an input b it
gets out, as the output, immediately, a y. The key property of the EPR-box
is that if a = b, then x = y, no matter in which order the parties put their
inputs in and how much time is between their entries. No-scommunication (no-
signaling) condition meanes that output of Alice (Bob) does not depend on the
input of Bob (Alice). Nonlocality exhibited in the EPR-box can be manifested
by the measurement of entangled states, namely of the EPR-state. However,
non-locality exhibited in so called PR-box, shown in Figure 2, where inputs
and outputs are always in the relation x · y = (a ⊕ b), seems to be beyond
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the possibilities of the physical world. Indeed, would there be a physical system
that would allow to implement the PR-box, then any multiparty communication
could be done by transmitting only a single bit (van Dam, 2005) what can be
indeed seen as impossible. Interesting enough, none of these non-localities allows
instantaneous communication and therefore they actually do not contradict the
no-signaling condition of special relativity4.5

The task to understand nonlocality is one of the most important in cur-
rent science. In this connection, the recent experiment (Scarani et al., 2000)
is of importance, from which it follows that there are reasons to believe that
either space-time is an illusion or free will is an illusion or, as their experiment
confirms, there is a special “quantum information” that travel faster then light
(but cannot be used directly to communicate classical information).

4 No-signaling condition actually says that local choice of measurements may not
lead to observable differences on the other ends. PR-box may seem as an artificial
construction, but it is not so and it comes out very naturally when non-classical
correlations and their limits are considered.

Indeed, the basic scheme is that two parties separated in space, say A and B,
that cannot communicate have an access to a physical state and can use it to
generate correlations. This can be seen as that both parties to perform one of two
randomly chosen measurements and then the outcomes of these measurements are
given by random variables and one asks the question how much can these outcomes
be correlated. Both classical physics and quantum mechanics put certain limits on
strength of such correlations. The limits that any classical theory (i.e. local hidden
variable theory) provides are known as Bell inequalities (Bell, 1964). There are
many of them and among them special position has so-called CHSH inequality

X

a,b∈{0,1}
Prob(xa ⊕ yb = a · b) ≤ 3,

where a and b denote choices of the measurements of A and B, and xa, yb are
outcomes of measurements. Quantum mechanics allows violation of this inequality,
but only up to so-called Cire’lson’s bound 2 +

√
2. The PR-box captures maximal

possible, mathematically, violation of this bound.
5 In spite of the fact that van Dam’s result strongly indicates/proves physical impos-

sibility of PR-boxes, they keep been intensively studied. For example, it has also
been shown (Short et al., 2005), that availability of PR-boxes would allow uncon-
ditional secure oblivious transfer protocol, an important cryptographical primitive.
Cerf et al. (2005) have also shown that a single PR-box could be used to simu-
late the EPR box, and therefore a maximally entangled state (its measurements),
though not any two-qubit entangled state and that the PR-box would be a strictly
weaker resource than a bit of communication. The PR-box can also be used to show
that no-cloning theorem holds. PR-boxes have a variety of other surprising and also
counterintuitive properties. They are surveyed nicely and referenced well by Scarani
(2006). For example, two parties may need 2n PR-boxes for some tasks that can
be performed using n EPR states. In addition, for all natural measures of non-
locality non-maximally entangled states exhibit more non-locality than maximally
entangled states.
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x y

ba

PR−box x . y = (a + b) mod 2

Fig. 2. PR-box

Quantum superposition, that stands for the fact that any quantum state is
a weighted superposition (with complex numbers as weights - probability am-
plitudes specifying probabilities of the transfer from a given state to particular
state of the basis) of the states of a basis, is another very special quantum phe-
nomenon. One of the implications of that is quantum parallelism that allows,
for example, on a single state of n quantum bits to perform, in a single step, an
action that corresponds, in some sense, to 2n computation steps in the classical
world. For example, one can get, in one step, into amplitudes of a quantum
n-qubit state, all values of a function f : {0, . . . , 2n − 1} → {0, . . . , 2n − 1}.6
There is a certain catch in this result/fact, because there is no way to get faith-
fully out all these values from the resulting quantum state. However, in some
important cases, as it is in Shor’s algorithm for factorization of integers n, this
does not really matter, because what one needs to compute is only a single
value, a period of a properly chosen function f(x) = ax mod n, and in such a
case such a massive quantum parallelism is indeed useful.

A mysterious fact is why we do not observe superposition and entanglement
between objects of the classical world if our world is actually fully quantum.7

6 With more technical details, it works as follows: If f : {0, 1, . . . , 2n − 1} ↔
{0, 1, . . . , 2n−1}, then the mapping f ′ : (x, 0) =⇒ (x, f(x)) is one-to-one and there-
fore there is a unitary transformation Uf such that for any x ∈ {0, 1, . . . , 2n − 1}.

Uf (|x〉|0〉) =⇒ |x〉|f(x)〉
The state |ψ〉 = 1√

2n

P2n−1
i=0 |i〉|0〉 can be obtained in a single step, using

Hadamard transform, from the basis state |0(n)〉 and with a single application of
the mapping Uf , on the state |ψ〉 we get

Uf |ψ〉 =
1√
2n

2n−1
X

i=0

|i〉|f(i)〉

Hence, in a single computation step, 2n values of f are computed! We have therefore
a really massive parallelism.

7 Of interest in this context are two well known citations: There is no quantum world.
There is only an abstract quantum physical description. It is wrong to think that the
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This strange situation was already long time ago well demonstrated by famous
Schrödinger’s cat Gedanken experiment with a cat that is in a superposition of
states |alive〉 and |dead〉 - though none has ever seen a cat that would be both
alive and dead. An important agenda of the current experimental research is
therefore to find some border lines, if they exist at all, between the world in
which superposition exists and the one where no superposition can be detected.8

There have been surprising results in such investigations recently. For example,
entanglement has been demonstrated at a group of 1012 atoms (see Julsgaard
et al., 2000) and quantum interference for large molecules (see Brezger et al.
2002). However, there is still a range of several orders of magnitudes to explore
where border between classical and quantum world is.

Concerning quantum measurement, there are also several mysterious and
counterintuitive things. The first one is the fact that results of quantum mea-
surement are random. Einstein’s position was expressed by his famous words
God does not roll dice, but equally famous is Bohr’s reply The true God does
not allow anybody to prescribe what he has to do.9 and the puzzling fact about
quantum measurement is that theory does not say anything about how much a
particular measurement really costs in terms of some physical resources. Because
of that it is usually considered, in efficiency calculations, that a measurement
step requires a unit time. However, this does not seem to be realistic because
sometimes we can see at a quantum measurement as that Nature performs, in a
“unit time”, quite complicated computation, what is again against our common
sense. Quantum measurement can therefore be seen as a special resource that,
if properly used, can do miracles, from quantum information processing point
of view.

task of physics is to find out how Nature is. Physics concerns what we can say about
Nature. by N. Bohr and There is no classical world - there is only quantum world
by D. Greenberger (see Arndt et al., 2005), who actually said: I believe there is no
classical world. There is only quantum world. Classical physics is a collection of
unrelated insights: Newton’s laws. Hamilton’s principle, etc. Only quantum theory
brings out their connection. An analogy is the Hawaiian Islands, which look like a
bunch of island in the ocean. But if you could lower the water, you would see, that
they are the peaks of a chain of mountains. That is what quantum physics does to
classical physics.

8 In this context another views are of interest from Arndt et al. (2005): The bor-
der between classical and quantum phenomena is just a question of money, by A.
Zeilinger, The classical-quantum boundary is simply a matter of information con-
trol, by M. Aspelmeyer, and There is no border between classical and quantum
phenomena – you just have to look closer, by R. Bertlman.

9 Experiments performed recently actually imply not only that God does play dice,
but actually that God plays with non-local dice, beause measuement of an entangled
state can produce shared randomness, see Gisin (2005).
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2 Basics of quantum information processing and

communication

Quantum physics deals with fundamentals entities of physics — particles, like
(a) protons, electrons and neutrons (from which matter is built); (b) pho-
tons (which carry electromagnetic radiation); (c) various “elementary particles”
which mediate other interactions of physics. We call all of them particles in spite
of the fact that some of their properties are totally unlike the properties of what
we call particles in our ordinary world. (Actually, it is not clear in which sense
these “particles” can be said to have properties at all.)

It is also clear that quantum physics is an elegant and conceptually simple
theory that describes with surprising precision a large spectrum of the phe-
nomena of Nature. Predictions made on the base of quantum physics have been
experimentally verified to 14 orders of precision. No conflict between predictions
of the theory and experiments is known. Without quantum physics we cannot
explain properties of superfluids, functioning of laser, color of stars, . . ..

Quantum physics is of special interest for informatics for several reasons. One
of them is similarity, in a sense, and close relation between these two areas of
science. Indeed, the goal of physics can be seen as to study elements, processes,
laws and limitations of the physical world. Goal of informatics can then be seen
as to study elements, processes, laws and limitations of the information world.
Of large importance is therefore to explore which of these two worlds, physical
and information, is more basic, if any, and what are the main relations between
the basic concepts, principles, laws and limitations of these two worlds.

Quantum physics can be also seen as an excellent theory to predict prob-
abilities of quantum events. Such predictions are to a large extend based on
three simple principles:

P1 To each transfer, from a quantum state φ to a state ψ, a complex number
〈ψ|φ〉 is associated, which is called the probability amplitude of the transfer,
and |〈ψ|φ〉|2 is then the probability of such a transfer.

P2 If a transfer from a quantum state φ to a quantum state ψ can be de-
composed into two subsequent transfers ψ ← φ′ ← φ, then the resulting
amplitude of the transfer form φ to ψ is the product of the amplitudes of
subsequent subtransfers: 〈ψ|φ〉 = 〈ψ|φ′〉〈φ′|φ〉

P3 If the transfer from a state φ to a state ψ has two independent alternatives,
then the resulting amplitude is the sum of the amplitudes of two sub-
transfers, which can be zero if α = −β. (This has surprising consequences. It
may happen that there are two ways, each with positive probability k = |α|2,
how to get from a state |φ〉 to a state |ψ〉, but if both options are possible,
then such a transfer has zero probability.)

To the physical concept of quantum system, the mathematical concept of
the Hilbert space is usually associated, and to the physical concept of a (pure)
state of a closed (that is not interacting with environment) quantum system,
the mathematical concept of a vector/state of a Hilbert space corresponds.
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is defined as well as the norm of a vector ||φ|| =
√

|〈φ|φ〉| and the metric
dist(φ, ψ) = ||φ − ψ||. This allows to introduce on H a topology and such
concepts as continuity.

Two quantum states are called orthogonal if their scalar product is zero. This
is a very important concept because physically are perfectly distinguishable only
orthogonal states.

Dirac introduced the following handy notation, so called bra-ket notation,
to deal with amplitudes, quantum states and linear functionals f : H → C.

If ψ, φ ∈ H , then 〈ψ|φ〉 is the scalar product of ψ and φ (and an amplitude
of going from φ to ψ); |φ〉 is called a ket-vector - a column vector, an equivalent
to φ; 〈ψ| is a bra-vector - a row vector, a linear functional on H such that
〈ψ|(|φ〉) = 〈ψ|φ〉.

Evolution in a quantum system is described by the Schrödinger linear equa-
tion

i~
∂ψ(t)

∂t
= H(t)ψ(t),

where ~ is the Plank constant, ψ(t) is the state of the system in time t and
H(t) is a quantum analogue of a Hamiltonian of the classical system. In case

H is constant, the Schrödinger equation has as solution ψ(t) = e−
i

~
Htψ(0) and

from that it follows that a discretized evolution (computation) of any quantum
system is performed by a unitary operator and a step of such an evolution we
can see as a multiplication of a unitary matrix10 A with a vector |ψ〉, i.e. as
A|ψ〉.
10 A matrix A is unitary if A · A† = A† · A = I, where A† is the matrix obtained

from A by transposition and then by replacement of each element by its complex
conjugate.
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A quantum bit, called usually qubit, is then a quantum state in H2, |φ〉 =
α|0〉 + β|1〉, where α, β ∈ C are such that |α|2 + |β|2 = 1 ( {|0〉, |1〉} is the
standard basis of H2).

Important operations on one qubit are Hadamard transform, represented by
the matrix

H =
1√
2

(

1 1
1 −1

)

11 and Pauli matrices σx =

(

0 1
1 0

)

and σz =

(

1 0
0 −1

)

.

Now we can say that the essence of the difference between the classical
computers and quantum computers is in the way information is stored and
processed. In classical computers, information is represented on macroscopic
level, by bits, which can take on one of two values, 0 or 1. In quantum computers,
information is represented on microscopic level, using qubits, which can take on
any from uncountable many values α|0〉+β|1〉, where α, β are arbitrary complex
numbers such that |α|2 + |β|2 = 1.

Very important is also difference between the ways compound classical and
compound quantum systems are created. In the classical case, any state of a
composed system is composed of the states of subsystems. This is not so in the
quantum case.

If a Hilbert spaceH (H′) corresponds to a quantum system S (S ′), and {αi}i
({βj}j) is a basis of H (H′), then the tensor product of H and H′, notation
H ⊗ H′, corresponds to the quantum system composed of S and S ′ and this
Hilbert space has a (standard) basis consisting of all tensor products of states
|αi〉 and |βj〉.

For example, Hilbert space H4 can be seen as the tensor product of two
one-qubit Hilbert spaces, H2 ⊗ H2, and therefore one of its (standard) basis
consists of the states |0〉 ⊗ |0〉, |0〉 ⊗ |1〉, |1〉 ⊗ |0〉, |1〉 ⊗ |1〉 These states are
usually denoted shortly as:

|00〉, |01〉, |10〉, |11〉.

Another important orthogonal basis inH4 consists of the following four so-called
Bell states:

|Φ+〉 = 1√
2
(|00〉+ |11〉, |Φ−〉 =

1√
2
(|00〉 − |11〉),

|Ψ+〉 = 1√
2
(|01〉+ |10〉, |Ψ−〉 = 1√

2
(|01〉 − |10〉).

Similarly, the (standard) basis states of an n-qubit Hilbert space H2n are the
states

|i1i2 . . . in〉 = |i1〉 ⊗ . . .⊗ |in〉,
where ik ∈ {0, 1} for all k.

11 Hadamard operation transforms the standard basis {|0〉, |1〉} into the dual basis,
consisting of the vectors {|0′〉 = 1√

2
(|0〉 + |1〉), |1′〉 = 1√

2
(|0〉 − |1〉)}
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A general state, |φ〉, of an n-qubit register has therefore the form:

|φ〉 =
∑

x∈{0,1}n

αx|x〉, where
∑

x∈{0,1}n

|αx|2 = 1.

Operators on n-qubits registers are unitary matrices of degree 2n. If a state |φ〉 of
an n-qubit register is measured with respect to the standard basis {|x〉}x∈{0,1}n ,
then in the quantum world the state |φ〉 collapses, with probability |αx|2, into
the state |x〉, and into the classical world information about that, as x, emerges.

The key concept of so called open quantum systems, that is quantum sys-
tems interacting with environmnet, is the concept of a mixed state, what is
a probability distribution {(pi, |φi〉)}ki=1 on pure states {|φi〉}i. To each such

a mixed state the density operator ρ =
∑k

i=1 pk|φi〉〈φi| is associated, and its
matrix representation is called density matrix. A very important fact is that it
may happen that the same density matrix corresponds to two mixed states and
that two mixed states are physically undistinguishable if their density operators
(matrices) are the same. In modern quantum information processing literature,
the concept of the state is often associated with that of the density operator.

Now we are in the position to define formally a so important concept of
entangled states. A pure state |φ〉 of a tensor product of Hilbert spaces H1 ⊗
. . . ⊗ Hn is called entangled if it cannot be decomposed in the form |φ〉 =
|φ1〉 ⊗ . . .⊗ |φn〉, where |φi〉 is a pure state of Hi. A mixed state ρ of n qubits
is called (fully) separable if it can be decomposed as

ρ =
∑

i

piρ
(1)
i ⊗ . . .⊗ ρ

(m)
i ,

where
∑

i pi = 1 and ρ
(j)
i is a density matrix of j-th qubit, for any j. Otherwise,

ρ is called inseparable or entangled.
We can now formulate one important limitation of quantum information

processing and to summarize differences between the classical and quantum
information.

The limitation is that there is no universal way how to copy/clone unknown
quantum states - what so called no-cloning theorem says. On the level of qubits,
no-cloning theorem says that there is no unitary transformation U such that
for any one-qubit state |φ〉 it holds U(|φ〉|0〉) = |φ〉|φ〉.12

12 Proof. Let us assume that a unitary U with such a property exists and that for two
different states, |α〉 and |β〉, U(|α〉|0〉) = |α〉|α〉 U(|β〉|0〉) = |β〉|β〉. Let

|γ〉 =
1√
2
(|α〉 + |β〉),

then

U(|γ〉|0〉) =
1√
2
(|α〉|α〉 + |β〉|β〉) 6= |γ〉|γ〉 =

1

2
(|α〉|α〉 + |β〉|β〉 + |α〉|β〉 + |β〉|α〉).
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We can now also say that important properties of the classical information
are: (a) transmission of information in time and space is very easy (b) making
unlimited number of copies of information is very easy. On the other side,
important properties of the quantum information are: (a) transmission of the
quantum information in time and space is very difficult; (b) there is no way to
make faithful copies of unknown quantum information. (c) attempts to measure
the quantum information destroy it, in general.

3 Outcomes and challenges of quantum computation

Quantum polynomial time algorithms of Shor, in 1994, that could be used to
break important classical cryptosystems, were so far main apt killers for quan-
tum information processing. A natural quantum version of the Fourier transform
has been the main tool13 and the quantum Fourier transform has been also used
later to design various other quantum algorithms that are more efficient than
the most efficient classical algorithms for the same algorithmic problems. Main
generalized result is that there are quantum polynomial time algorithms for
so called Hidden Subgroup Problem for Abelian groups.14 Perhaps the most
important open problem in the design of quantum algorithms is to determine
whether the Hidden Subgroup Problem is always solvable in polynomial time
also for non-Abelian groups. Would this be true, it would imply, for example,
that there is a quantum polynomial time algorithm also for the graph isomor-
phism problem.

Even of large impact on the design of efficient quantum algorithms have
had the discovery of Grover (1996). who has shown that one can find in an un-
ordered database of N elements a unique element satisfying a given condition P
in
√
N quantum steps. His idea was generalized and applied in numerous ways

and resulted also into so-called probability amplification technique. Recently,
quantum random walks got a momentum as a way to design quantum algo-
rithms (see Aharonov et al., 2001). Of interest are also non-traditional modes
of quantum computation as adiabatic (see Farhi et al., 2000). Several ingenious
techniques have also been developed to prove lower bounds: for example, the
polynomial method (Beals et al., 1998), the quantum adversary method (Am-
bainis, 2000) and its various variants. They have been used to show a variety
of impressive lower bound results (see Gruska, 1999-2005, for an overview).

13 Also other quantum generalizations of transforms known from signal processing
and applied mathematics have turned out to be useful for the design of quantum
algorithms.

14 The Hidden Subgroup Problem is the following one: Given is an (efficiently com-
putable) function f : G → R, where G is a finite group and R a finite set and a
promise that there exists a subgroup G0 ≤ G such that f is constant on any left
cosset and distinct on different cossets of G0. The task is to find a generating set
for G0 (in polynomial time (in lg |G|) in the number of calls to the oracle for f and
in the overall polynomial time).
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There are several, and some quite surprising, models of quantum universal
computation. The most basic one is that of quantum unitary-operations based
circuits, that is defined in a similar way as in the classical case, only gates have
to be quantum, representing quantum unitary operations. Given an algorithmic
problem P , in order to solve it using a quantum circuit one has to find at first a
unitary operations UP that solves P and then to create a quantum circuits CUP

,
with quantum gates from some universal set of quantum gates, that implements
UP .

A variety of special problems concerning quantum computation comes from
the fact that quantum unitary operations have to be reversible, that is such
that one can uniquely determine inputs from their outputs. This seems to be
a very special and strong restriction because from the most basic logical op-
erations only NOT is reversible and none of the basic arithmetical operations.
An important contribution to the understanding of the computational power of
quantum phenomena was a surprising result of Bennett (1973) that says that
if a function f is computable by a one-tape Turing machine in time t(n), then
there is a 3-tape reversible Turing machine computing, with constant time over-
head, the mapping a→ (a, g(a), f(a)), where g(a) is so called garbage that can
be removed using a special technique. For classical reversible computations of
Boolean functions universal is so called Toffoli operation, or control-control-not
operation, CCNOT(x, y, z) = (x, y, (x ∩ y)⊕ z).

Nature offers many ways – let us call them technologies – various quantum
information processing primitives can be exhibited, realized and utilized. Since
it appears to be very difficult to exploit potential of the Nature for QIP, it is
of large importance to explore which quantum primitives form universal sets
of primitives. Also from the point of view of the understanding of the laws
and limitations of QIP, and also of quantum mechanics itself, the problems of
finding rudimentary and universal QIP primitives are of large importance.

Concerning universal sets of computation primitives, the very basic result
says that a single two-qubit operation control-not, CNOT (|x〉.|y〉) = |x〉|x⊕y〉,
and all one-qubit gates form a universal set of gates that can be used to design,
for any unitary operation and any given precision ε > 0, a quantum circuit to
approximate this operation with precession ε. (The catch is that it is very diffi-
cult to create the CNOT-gate because such a gate has to be able to transform
two separable states into an entangled state.15 Universal is also the set of the

15 There are many ways how to create entangled states. For example, using various
special physical processes. Of importance for understanding problems with the de-
sign of quantum processes is the fact that if CNOT is applied to two simple and
separated one-qubit states, then CNOT may produce an entangled state: Indeed,
CNOT(|0〉, 1√

2
(|0〉 + |1〉) = 1√

2
(|00〉 + |11〉). Another surprising way how to create

an entangled state of two separated particles is so-called entanglement swapping: If
particles P1 and P2 are in the EPR-state and so are particles P3 and P4, then Bell
measurement of particles P2 and P3, makes particles P1 and P4, that have never
interacted before, to get into the maximally entangled EPR-state: In other words,
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putational purposes with classical input and output, universal is also the set of
only two simple gates: the Toffoli gate and the Hadamard gate (Shi, 2002). This
actually means that in order to get universality for quantum computation one
has to add the Hadamard gate to the Toffoli gate that is universal for classical
reversible computation. (Hadamard gate can actually create a perfectly random
bit.) It is also known that any n-qubit unitary operation can be implemented by
a circuit consisting of O(4n) gates CNOT and one-qubit gates (see Vartianen
et al., 2003). One of the recent surprising results in QIPC is that universal,
from the computational point of view, are also circuits with gates performing
only measurements and that what is needed for that are measurement-gates
from only a very small set of gates. Measurement gates can be specified by
Hermitian operators and measurements then correspond to the orthogonal ba-
sis created by the orthogonal set of eigenvectors of these Hermitian matrices.
Actually, universal is a set of only four different Hermitian operators (measure-
ments, see Perdrix, 2004). Measurement-based computations are probabilistic,
up to a Pauli matrix, but this is only a small handicap. Another surprising
model of universal computation are so-called one-way computers at which com-
putation starts with a special entangled, so-called cluster state, but then only
one qubit measurements are performed (Raussendorf and Briegel, 2000). All
these results indicate that search for primitives in quantum computation is
likely still to be full of surprises and options, what is actually not so strange
because Nature offers so many way quantum information processing processes
can be exhibited.

CNOT gate has to be able to make entangled two particles that have never before
interacted, see Figure 3.
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Two types of circuits are of special importance. Universal circuits, for certain
number k of qubits, that can perform any unitary operation on k qubits if
some classical parameters are fixed appropriately. Such universal circuits, with
3 CNOT gates and 15 elementary rotation gates for the case of two qubits and
with 40 CNOT gates and 98 elementary rotation gates in the case of three qubits
were derived by Vatan and Williams (2003, 2004), see also Gruska (2005).

Programmable circuits (sometimes called programmable processors) are an-
other type of circuits that are universal in some restricted sense and that are
of theoretical and also of large application interest. The basic idea is similar to
that in case of classical universal circuits: certain inputs form so-called oper-
ation register and are used to specify, through a quantum state, an operation
U that is to be performed on the state |φ〉 given on the remaining inputs -
on data register. There are several reasons why are such circuits are of im-
portance. They may be universal for a set of operations and the operation to
be performed can be result of some previous computation. The idea of pro-
grammable circuits has a limited use in case it is required that the outcome
U(φ) is determined uniquely and perfectly, because in such a case in order for
a programmable circuit to be able to perform n unitary operations the dimen-
sionality of the program space has to be n, in order for the circuit to be able
uniquely distinguish the program given. More interesting and practical seem to
be the cases that the outcomes should be correct only with some (sufficiently
large) probability, or should only approximate the correct result, again with a
given precision. Approximate programmable circuits also better reflect reality
because circuits with perfect outcomes are an idealization only. For an overview
of the subject and latest results on approximate programmable circuits that
can approximate a set of unitary operations see Hillery et al. (2005). There
are many interesting/important problems associated with such programmable
circuits. For example, how to determine input that makes the circuit/processor
to make best approximation of a given unitary.

Of interest and importance are also investigations what kind of circuits can
be simulated in polynomial time on classical computers. Almost “classical” re-
sult of Gottesman and Knill (see Nielsen and Chuang, 2000), says that circuits
composed of the CNOT-gate, Hadamard-gate and the standard basis measure-
ment, so called Clifford circuits, can be simulated on classical computers in
polynomial time. Recently, Markov and Shi (2005) have shown that a quantum
circuit with n gates, whose underlying graph has tree-width d can be simu-
lated classically in nO(1)eO(d) time, which is polynomial in n if d = O(lg n).
This result has a variety of implications: for example in classical polynomial
time one can simulate any log-depth circuit whose gates apply to nearby qubits
only. Another approach to the problem of simulation on classical computers was
taken by Somma et al. (2006). They consider a special Lie-algebraic models of
computation and showed that these models can be efficiently simulated on clas-
sical computers in time polynomial in the dimension of algebra. Their results
generalize those on fermionic linear optics computations.
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Another very basic model of quantum computation are quantum finite au-
tomata. Actually, there are several versions of them. Three very basic problems
for models of quantum automata to explore are: (a) What is the class of lan-
guages accepted by a given model? (b) Which accepting probabilities can be
achieved with a given model of automata? (c) How does the size of automata
of the model (the number of states) compares to the size of equivalent minimal
deterministic finite automata?

Comparing with classical finite automata, quantum finite automata have
special strength, due to the power of quantum superposition (parallelism), but
also a special weakness, due to the requirement that they have to be reversible.
(It is important to notice that negative impacts of reversibility can be, to a large
extent, compensated by a suitable distribution of suitable measurements.) For
some models, quantum finite automata accept a smaller class of languages as
regular languages and for some other models they accept exactly the class of
regular languages. Of large importance is what kind of measurements are per-
formed and which measurement policy is used. For example, a measurement
is performed after each computation step or only at the end of computation -
two extreme options. It has also be shown that in some cases quantum finite
automata can be exponentially more succinct than classical deterministic fi-
nite automata. However, in some cases the opposite situation occurs. The very
basic models of quantum finite automata, so called one-way (or real time) quan-
tum automata, are defined similarly as probabilistic automata, only instead of
probabilities, probability amplitudes are used and there is one additional re-
quirement, namely that the overall evolution has to be unitary. More peculiar
are quantum two-way automata. In the most basic model, they are a natural
generalization of the classical two-way probabilistic finite automata. Quantum
two-way automata can accept, with high probability, even some non-regular
or non-context-free languages. In another model, quantum two way automata
work almost as classical ones, they only have an additional quantum memory
and at each step they either perform a usual classical move and a unitary op-
eration on the state of their quantum memory, or a measurement on quantum
memory is performed that then specifies, in a random way, the next move. Such
automata have been shown to be much more powerful than classical probabilis-
tic two-way finite automata (Ambainis and Watrous, 1999), even in the case
quantum memory is restricted to one qubit (for an overview of concepts and
results concerning quantum finite automata, see Gruska (2000).

The very basic model of quantum Turing machines, originally due to Deutsch
(1985), is again a modification of that of a probabilistic Turing machine - prob-
abilities are only replaced by probability amplitudes. However, a non-trivial
additional requirement is that the overall evolution of a quantum Turing ma-
chine has to be unitary. A state of such a quantum Turing machines can be
seen as a weighted superposition of many configurations of a classical Turing
machines. This model has been used to define basic quantum complexity classes
and to develop quantum structural complexity. Such a model has classical in-
puts and outputs, only its evolution is quantum. Two new quite different models
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of Turing machines are of interest and importance. Both of them have quantum
inputs and outputs (as sequences of qubits). One model (Jorrand and Perdrix,
2004), works with one additional qubit as memory and only measurements as
operations. Another model is that of quantum Turing machines with classical
control and quantum operations (Jorrand and Petrix, 2004a). The basic phi-
losophy behind many of such models is that measurement is the basic tool to
make quantum world to perform computations we need in the classical world.

An important challenge concerning quantum computation is to develop a
really good model of quantum cellular automata. There have been numerous
attempts to do that, with variety of interesting results, but one can say that
theory of quantum cellular automata is still not in a good shape. At the same
time, quantum cellular automata are of large importance for quantum physics
because interactions with neighbours is the very basic way Nature works. Those
versions of quantum cellular automata that are O.K., are modifications of the
partitioned or block-type of the classical cellular automata, see Schumacher and
Werner (2004), for recent results.

Quantum (structural) complexity theory is also being developed and it is
an important part of quantum information processing science. One of the goals
of quantum complexity theory is to challenge our basic intuition how physical
world behaves. One can also say that quantum complexity theory is of great
interest because one of its goals is to understand two of great mysteries of
20th century: what is nature of quantum mechanics and what are the limits of
computation. It would be astonishing if a merge of such important areas would
not shed light on both of them and would not bring new great discoveries.
Taking complexity theory perspective can lead us to ask better questions about
quantum nature – nontrivial, but answerable questions, which put old quantum
mysteries in a new light even if they fall short of answering them (Aaronson,
2005).

Quantum complexity theory has as the basic complexity class QP (as a
quantum variant of the class P) and the class BQP (as a quantum variant
of the class BPP). There are also two quantum versions of the class NP,
namely the classes NQP and QMA. There are also many variants of the classes
of relativistic quantum computing. Unfortunately, an introduction of all these
classes did not help to make order in the ZOO of more than 470 classical
complexity classes. Just opposite happened, the mess got larger. For an overview
of recent results see Gruska (1999-2005)). From the recent surprising results in
this area we mentioned that of Raz (2005) showing enormous power of quantum
advices.16

In connection with theoretical investigations concerning quantum informa-
tion processing and communication, of large importance is to find out whether
we can really build powerful quantum computers and what is required for suc-
cess. In this connection, one of the main goals of quantum informatics in general,

16 Raz has shown that a quantum interactive proof system at which the verifier gets
quantum advices can solve any problem whatsoever.



From Informatics to Quantum Informatics 33

and quantum complexity theory in particular, is to help to resolve this puzzle.
In behind is actually question whether our world is polynomial or exponen-
tial, as pointed out by Aaronson (2005). The fact that such a basic question is
unresolved makes also of large importance the task to study more elementary
models as are that of quantum circuits, quantum programmable circuits and
quantum finite automata.

Main new challenges of quantum complexity theory can be seen as follows
(see also Gruska (2005): (a) To help to determine whether we can build (and
how) powerful quantum computers. (b) To help to determine whether we can
effectively factorize large integers using a quantum computer. (c) To use com-
plexity theory paradigms to classify quantum states (d) To use complexity the-
ory (computational and communication) to study quantum entanglement and
nonlocality. (e) To use complexity theory to determine power of decoherence
and to find ways to fight decoherence. (f) To use complexity theory to formu-
late laws and limitations of physics. (g) To study feasibility in physics on a more
abstract level. (h) To study various quantum theory interpretations from a new
and more abstract (complexity) point of view. (e) To develop a more firm basis
for quantum mechanics. (f) To develop new tests of quantum mechanics.

4 Outcomes and challenges of quantum communication

σ σ

ψ

ψ

Bell
meas.

EPR−state
x z

Fig. 4. Quantum teleportation

Quantum teleportation was the first and is still the most amazing new fea-
ture of quantum communication. The basic idea is very simple: if two parties,
say Alice and Bob, share two particles, say A and B, in the EPR-state and
Alice gets a new particle P in an unknown state |ψ〉 = α|0〉+β|1〉, then by per-
forming the Bell measurement (that is the measurement using the Bell states),
on her two particles, Bob’s particle gets with the same probability into one of
the four states |ψ〉, σx|ψ〉, σz |ψ and σxσz |ψ〉, and Alice gets information (say,
in the form of two bits) which of these four cases took place. If Alice sends this
information to Bob, through a classical public channel, for example by email.
Bob can then make his particle B to get into (still unknown for him) state |φ〉
by performing on his particle one of the operations σx, σz or σxσz, because
σ2

x = σ2
z = I . This way Alice can teleport, not knowing what, to not knowing

where.
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Quantum teleportation allows therefore to send one qubit by sending two
classical bits (if shared entanglement is available). In some sense, an inverse
process is so called dense coding that allows in one qubit to send two bits (if
shared entanglement is again available). This is also surprising because so-called
Holevo theorem says that in one qubit we can store faithfully only one bit.

Quantum teleportation allows perfectly secure transmission of quantum in-
formation (encoded via qubits) provided communicating parties share enough
of EPR-states.

Shared entanglement can be also used to exhibit so called pseudo-telepathy,
see Brassard et al., 2003. For example, in various games that look as having
participants to use telepathy to make agreements, but actually correlations
between their actions are achieved by proper measurements of proper shared
entangled states.

It has been shown that shared entanglement can be used to improve ex-
ponentially protocols for a variety of communication tasks. For example, see
Buhrman et al. (1998), Raz (1999). However, for some other communication
tasks, as for computation of the inner product, it cannot.

Results of communication complexity have also been used to show that some
phenomena are likely impossible in physical world. For example, they were used
to show, see van Dam (2005), Brassard et al. (2005), why are the correlations
achievable by quantum processes not maximal among those that would preserve
non-signaling condition of special relativity. They were also used to explore
the question how well can processes of quantum mechanics approximate PR-
boxes, see page 19, that would exhibit strongest correlations preserving the non-
signaling condition. They have shown that, on one side, that availability of prior
shared entanglement allows to approximate PR-boxes with a success probability
cos2 π

8 ≈ 0.854 and that would it be possible to do that with probability greater
than 0.908, then any Boolean function could be computed using only one bit
of communication, what is considered as impossible. An interesting challenge is
to close the gap between 0.854 and 0.908, in the above context.

Large progress in understanding various aspects of quantum communication
has been made during the recent years. We mention here only some results
concerning quantum entanglement, and capacities of quantum channels.

4.1 Outcomes and challenges of quantum entanglement

In this area very large progress has been made in recent years. In spite of that
in almost all its areas there are big challenges.

Basic problem is how to generate entangled states and how far entangled
particles can be. A large variety of physical processes have been explored that
result in entangled states. Importance of entangling unitary operators, those
that can transform a product state to an entangled state has also been demon-
strated. For example, any such two qubit entangling operation and all one qubit
operations form a universal set of unitary operations. Entanglement swapping
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is perhaps the most counterintuitive way to generate entangled states. To de-
cide whether a given mixed state is entangled is another important problem
and many methods to do that were developed. Problem how many pure and
maximally entangled states one can get from a given set of mixed states is also
pretty good understand and many methods to do that were explored. The same
is true for entanglement concentration problem: to get some maximally entan-
gled pure states from a set of less entangled pure states. Discovery of bound
entangled states - those mixed entangled states from which one cannot get pure
entanglement - has been a big surprise and so were discovery of various prop-
erties of such states and of various ways how bound entangled states can be
useful. Study of entanglement monotones, invariants and measures17 is another
important area of research with many interesting and important results. The
fact that entanglement can be used as a catalyst that can help, without be-
ing destroyed, to transform one quantum state to another using local quantum
operations and classical communication (LOCC) has been another surprising
discovery. laws and limitations of entanglement sharing and also quantitative
and qualitative classification of multipartite states is another big challenge. On
a more applied level, a big challenge is still to understand how important is en-
tanglement for quantum computation. Another big challenge is to get a proper
understanding how frequent is entanglement and how robust such a concept
can be (for example that in some vicinity of some entangled states all states are
entangled). For a review of results in all these areas see Gruska (2003).

Concerning quantum channels perhaps the main issue is to study various
types of channels and various capacities. Entanglement plays by that a very
important role. An important task was to find nice formulas to express different
capacities and to find relations between different capacities, see Nielsen and
Chuang (2000) and Gruska (1999-2005).

5 Outcomes and challenges of quantum cryptography

So called BB84 quantum protocol, due to Bennett and Brassard (1984), for
generation of classical shared and perfectly secret keys, and numerous proofs,
using a variety of techniques, under more and more realistic conditions (con-
cerning perfection of the photon sources, quality of channels and perfection of
the receivers), that BB84 protocol is unconditionally secure, have been the first
highlights of quantum cryptography. The first experiment, due to Bennett and
Brassard (1989), demonstrated feasibility of such a protocol for the distance of
32 cm. This has been increased, step by step to 120-150 km what used to be
seen as limit set up by photon loses and detectors loses. Zhang et al., (2005)
claim to increase maximal distance to 260km exploiting entanglement swapping

17 An important measure is so called entanglement of formation Ef (how many max-
imally entangled states are needed to create a given state) is one of such measures
and the additivity problem for this measure - that is if always Ef (ρ1 ⊗ ρ2) =
Ef (ρ1) +Ef (ρ2)) - is a very important open problem.
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and quantum relays. A big challenge for classical key generation is still to make
quantum generation of the classical keys more robust, more reliable and with
much better performance. The DARPA network, that was launched in 2003
in Boston connecting Boston and Harvard universities on one side, and BBN
Technology on the other side, is one of the most complex attempts to create
a network for quantum key distribution. Such networks for metropolitan areas
are currently seen as feasible.

So-called unconditional security of the classical keys generating quantum
protocols actually says that undetectable eavesdropping is impossible, in a very
reasonable probabilistic sense. Behind this results is impossibility of quantum
cloning and destructive impacts of quantum measurement.

Another highlight of quantum cryptography has been the proof that uncon-
ditionally secure bit commitment is impossible, due to the fact that the existence
of quantum entanglement is impossible to detect locally, and therefore quantum
entanglement can always be used for cheating. There are again many proofs of
this result and many consequences for such protocols as oblivious transfer, coin
tossing and multipartite computation.

There are many other task of broadly understood cryptography, where quan-
tum protocols have been developed and/or are under development: quantum
authentication, digital signatures, public key cryptography, secret sharing, data
hiding, anonymity, voting and so on. An open problem, recently resolved, by
Watrous (2005), was to find a proper approach to quantum zero-knowledge
proofs.

One of the most particular aspects of security in quantum cryptography is
that in the quantum case a variety of possible quantum attacks is much larger
and they can be more complex than in the classical case. All that makes security
consideration in quantum case much more complex.

Of surprising elegance, simplicity and power, is quantum version of the
classical ONE-TIME PAD cryptosystem. In the classical case, to encode an
n-bit plaintext p, using a shared n-bit random key k, one performs bit-wise
⊕-operation to get the cryptotext c = p⊕ k. Decryption is done then using the
same procedure: p = c⊕ k. Another way to see the classical ONE-TIME PAD
cryptosystem is that n bits (of the shared key) are sufficient (and necessary)
to hide perfectly n bits (of the plaintext) so one can get them all back (by
decryption).

Quantum ONE-TIME PAD uses two n-bit keys k and k′, to encode a plain-
text of n qubits |p1〉, . . . , |pn〉. An encryption of the ith qubit is done by multipli-

cation with Pauli matrices |ci〉 = σki

z σ
k

′

i

x |pi〉 and its decryption can be obtained

analogically as σ
k

′

i

x σ
ki

z |ci〉. This way a qubit |pi〉 is encrypted and sent through
a mixed state {( 1

4 , |pi〉), ( 1
4 , σx|pi〉), ( 1

4 , σz |pi〉), ( 1
4 , σxσz , |pi〉)} that is undistin-

guishable from a random bit and therefore this quantum ONE-TIME PAD is
perfectly secure. Amazing by that is that inspite of the fact that one qubit can
hide infinitely many bits, in its amplitudes, to hide such a qubit as a whole, so



From Informatics to Quantum Informatics 37

one can get the qubit back perfectly, only two classical bits are sufficient (and
necessary) - see Mosca et al. (2000).

6 Outcomes and challenges of quantum formal systems

In the classical informatics, the development of high level formal systems, based
on the concepts and tools of logic and formal semantics, to precisely specify and
reason about computation, cooperation and communication processes in gen-
eral, and about algorithms, protocols and concurrent systems in particular, has
turned out of large importance for design and analysis of provably correct soft-
ware for computation and communication systems. At the same time, this line
of research in the classical informatics has brought theoretically surprisingly
deep and practically very important and useful insights and outcomes concern-
ing the laws and limitations of very large information processing, cooperation
and communication systems.

Classical complexity theory research community, with emphasis on lower
bounds, clearly underestimated, for a long time, an importance of this area of
research. However, step by step, this, logic and formal semantics and abstraction
based, area of research started actually to dominate in broadly understood
theoretical computer science and there are good reasons to believe that it can
be so, and even more, also in the area of the classical/quantum computing.
Moreover, there is also a good chance that also this area of research can bring
new view points and tools to deal with quantum mechanics in general, and with
quantum information processing and communication in particular, and to put
new lights on these areas.

There are two main reasons why quantum (quantum/classical) program-
ming theory is much needed and has a chance to be insightful and useful. At
first, any formal description of algorithms, protocols and processes, that make
use of quantum phenomena has to to take into account both quantum and clas-
sical computation, cooperation and communication components and assemble
them in such a way that they coexist, communicate and cooperate. (For exam-
ple, preparation of quantum states is an (always inevitable) example of classi-
cal/quantum interaction and quantum measurement (and control actions that
depend on its random outcome) is an (always inevitable) example of a clas-
sical/quantum/classical interaction. One can also say that classical/quantum
interaction and cooperation is inherent in the classical/quantum information
processing and communication. Fortunately, concepts and tools developed in
the classical programming theory have been so abstract and powerful that they
are now quite easy to adjust to cover classical-quantum case in a homogeneous
way. Secondly, concepts and tools developed in the classical programming the-
ory are so abstract and powerful that they allow to generalize naturally current
(von Neumann) quantum mechanical framework that was created to deal just
with “minimal view of quantum mechanics”. This more general framework, that
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allows to consider current view of quantum mechanics as a possible model, has
its advantages.

Some of the main challenges in this area can be seen as follows:

– To develop quantum and classical/quantum versions of formal systems, for
description, analysis and verification of algorithms, protocols and computa-
tion/communication systems, that have turned out to be so important for
the classical information processing (see, for example, Lalire and Jorrand
(2004)18).

– To develop abstract (for example category theory based) approaches to quan-
tum/classical information processing and communication and also to quan-
tum mechanics itself (see, for example, the approach of Abramsky and Coecke
(2004)19).

– To develop new understanding of fundamental quantum phenomena using
ideas and concepts coming from logic- and semantics-based formal systems,
see, for example, Coecke (2005)20.

7 Outcomes and challenges in beating decoherence

Decoherence - a destructive impact of the environment on any information pro-
cessing quantum process - used to be seen, and it is still seen by many, as the
main, and even unbeatable, obstacle for our goal to have reliable and powerful
quantum information processing. One of the reason for that was a conviction
that, from the physics point of view, sufficiently powerful quantum error cor-
rection is impossible for a variety of reasons. Some of them were beliefs that
in the quantum case the number of the potential quantum errors21 is infinite,
that any attempt to detect errors by measurement would destroy, in an irre-
versible way, the erroneous state, and, finally, that quantum error correcting
codes would need to fight successfully, and in polynomial time, exponentially
fast growing decoherence, what looked again as impossible. However, it has,
fortunately, turned out that, under very reasonable assumptions, it is sufficient
to consider two types of errors - a bit error that is actually performed by the
Pauli σx operator (σx(α|0〉 + β|1〉) = α|1〉 + β|0〉) and a sign error, performed
by the Pauli σz operator (σz(α|0〉 + β|1〉) = α|0〉 − β|0〉). It was then shown,
especially by Shor (1995, 1996), that not only sufficiently powerful error correct-
ing codes and processes do exist, but that also quantum information processing

18 They developed a process algebra approach to concurrent and distributed quantum
computation.

19 They recasted standard axiomatic presentation of quantum mechanics at a more
abstract level in terms of category theory and this new and more abstract approach
creates new possibilities to reason about quantum mechanics

20 He developed so called picture calculus for quantum mechanics ( as a natural ex-
tension of Dirac’s notation).

21 Nature actually does not make errors. It can only behave differently than we wish
or expect.
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can be realized in a fault-tolerant way. All that has been achieved by a clever
generalizations of the ideas known from the classical linear codes. Second ma-
jor breakthrough came with the discovery of threshold theorems that say that
if elementary gates and channels have certain reliability,’then, using so-called
concatenated codes, arbitrarily long, in time and space, reliable quantum infor-
mation processing and communication is possible. Each such threshold theorem
establishes some bounds and any improvement of upper and lower bounds on
such thresholds is currently an important task and challenge that could help to
see realistically what needs to be achieved and where we are currently concern-
ing the development of elements for QIPC. Concerning fighting the decoherence,
the main current challenges are: (a) to develop error models for specific QIPC
technologies and for them also quantum error correcting codes; (b) to develop
error detecting and preventing codes; (c) to generalize the concept of errors (see,
for example, the concept of nice error bases, see, for example, Klappenecker and
Rotteller (2000); (d) to explore various ideas of so called error-free subspaces.

8 Outcomes and challenges in beating quantum

limitations and barriers

We will discuss here only three limitations: the one established by no-cloning
theorem and its variations (no-deletion theorem and so on), and so called Turing
barrier and BQP-barrier.

Buzek and Hillery (1996) were first to show that one can determine a reach-
able upper bound on the best way how to do cloning on qubits in an approxi-
mate way. Their results have been generalized in various ways to cover Hilbert
space of larger dimension and other mathematically well defined operation that
cannot be realized perfectly physically.

Finally, let us discuss Turing barrier or better Church-Turing barrier. Turing
thesis, or Church-Turing thesis, can be formulated as follows: Every function
that can be computed by what we would naturally regard as an algorithm is a
computable function, and vice versa. So called Turing principle, formulated by
Deutsch, reads as follows: Every finitely realizable physical system can be per-
fectly simulated by a universal computing machine operating by finite means. It
is important to realize that Church-Turing thesis can be seen as one of the guid-
ing principles for mathematic, physics and informatics and that since its very
beginning Church-Turing thesis is under permanent attack from both mathe-
matical and physical sciences. In mathematics and computing, all these attack
used to be based on uncritical use of infinity, continua and density. It is also
important to realize that recognition of physical aspects of the Church-Turing
thesis has had important impacts also for physics. Turing barrier puts important
restriction when searching for new physical theories

It is interesting and important to ask and answer the question what is the
sense of trying to beat such a barrier that seems to be unbeatable. To that
one can say the following: (a) It is interesting and intellectually usually very
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rewarding to overcome limitations that seem to be unquestionable; One has
to realize that limits of mathematics ought to be determined not solely by
mathematics itself but also by physical principles; Attempts to show that there
is a way to overcome Turing barriers are an important way to improve our
understanding of physical world and nature in general and to find in it new
important resources and/or theories.22

Two other questions are of interest for us now. Is there a chance to overcome
this barrier and can we use quantum phenomena to do that? An extended
version of Church-Turing thesis, that captures an important new phenomenon
in computing - the existence of global computing network that continuously
interact with environment, keep changing/evolving, works practically without
an end and have inputs that can be seen as non-uniform. van Leeuwen and
Wiedermann (2001) have shown that any (non-uniform interactive) network
computation can be described in terms of interactive Turing machines with
advices23 that are equivalent to so called site machines and also equivalent
to internet machines (GRID-networks) (that is a model inspired by computer
networks and distributed computing). All these models accept all recursively
enumerable sets and their complements.

The Extended Church-Turing Thesis (or VW-thesis of van Leeuven and Wie-
dermann) does not aim to attack the Church-Turing thesis; VW-thesis merely
tries to identify a new proper extension of Church-Turing thesis (to cover com-
putations that share the following features: non-uniformity of programs, interac-
tion of machines and infinity of operations). VW-thesis tries to see the concept
of computation in a broader sense, based on different assumptions and suited
to answer different questions.

Since it is possible, in a sense, to get beyond, in the classical world, it is
natural to see as a challenge to do so even more in quantum world. The attempts,
as those of Kieu (2001), who has tried to show a quantum way to solve Hilbert’s
10th problem, can hardly be seen as successful, as analysed by Hodges (2006).
On the other hand, there seem to be more successful attempts to do so using
some other physical principles. For example, Etesi and Németi (2002) showed
that certain relativistic space-time theories license the idea of observing the
infinity of certain discrete processes in finite time. That led to the observation
that certain relativistic computers could carry certain undecidable queries in
finite time. On this basis Wiedermann and van Leeuwen (2005) designed a

22 In this context one can see as especially valid the following thought When you try
to reach for stars you may not quite get one, but you won’t come with a handful of
mud either. by Leo Burnett.

23 The idea of advices has the following motivation: Many systems in Nature prefer to
sit in highly entangled multipartite states. Is it possible to make use of that to get
an extra computational power (see Nielsen and Chuang, 2000)? Technically, we get
to the following problem: Are quantum advices more powerful than classical? In
other words, is (BQP/qpoly = BQP/poly?) Concerning the power of advices, the
following result of (Raz, 2005) is of interest. A quantum interactive proof system
at which the verifier gets quantum advices can solve any problem whatsoever.
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relativistic Turing machine that models the above relativistic computer and
that recognizes exactly ∆2 set of Arithmetical Hierarchy.

BQP-barrier says that effectively computable are problems that are in
BQP. The question whether we can beat this barrier seems to be more in-
triguing and it does not have (yet) such a statue of unbeatability as other
barriers. Actually, previous versions of this barrier, that included complexity
classes P and BPP, seem to be beaten, though we are not sure, yet.24

There are still many mysteries concerning the class BQP. Not only we do
not know whether NP ⊆ BQP, but we even do not know whether NP ⊆ BQP
would imply P=NP.

Related to that is the NP-barrier that says that not all NP-complete prob-
lems can be solved in polynomial time using the resources of the physical world.

There have been many attempts to beat NP-barrier and they are to large
extend well summarized and analyzed by Aaronson (2005a). He discuss such
ideas as quantum adiabatic computing, variations on quantum mechanics (non-
linearity, hidden variable theories), analog computing, but also more esoteric
ones as relativity computing25, time travel computing, quantum field, string
and gravity theories, and even anthropic computing26 Main conclusions are: (a)
searches for overcoming NP barriers are important, they can bring a better
understanding of the physical worlds; (b) none of the well specified attempts is
successful - they usually forget to count all resources needed and/or all physics
known.

In connection with NP-barrier, of interest and importance is the question,
see Aaronson (2005) whether we should not take “NP-hardness assumption”
saying that NP-complete problems are intractable in the physical world as a
new principle of physics (as, for example, Second Law of Thermodynamic is).
This principle starts to be used. Perhaps main problem with it is that why NP,
why not BQP or #P or PSPACE.

On a more philosophical level, all above considerations lead to two basic
questions: Is universe computable? Is it efficiently computable? It is nowadays
clear that the assumption of the founders of the Hilbert space quantum me-
chanics that any state and observable are in principle implementable is wrong.
That would allow to compute uncomputable functions. Less clear is what to
consider as feasible.

24 In this connection it is perhaps worth to observe that, on one side, likely nobody
believes that classes P and BPP are identical, and, on the other side, Impagliazo
and Widgerson (1997) gave quite convincing evidence that they are.

25 The idea behind relativity computing can be informally described as that one makes
a computer to deal with an intractable problem, then boards a spaceship and ac-
celerates it to nearly speed of light. After returning to Earth, answer will wait for
him (though all his friends would be long dead).

26 They are models of computing in which the probability of one’s own existence might
depend on a computer’s output.
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9 Impact of quantum informatics

Let us try to summarize briefly three impacts of quantum informatics: on quan-
tum physics, quantum information processing and communication and on (clas-
sical) informatics itself.

Impacts on (quantum) physics: Quantum informatics brings to quantum
physics a new way of thinking, new value systems, new ways, more general
and more precise, of formulation of quantum physics laws and limitations, new
ways to get around, in a reasonable way, of otherwise its strict laws and also
a variety of new technical concepts, methods, tools and results. It brings new
paradigms, concepts, models, measures and so on. It helps to increase quality of
reasonings and findings in quantum physics. Quantum complexity theory helps
to establish principles, see Aaronson (2003, 2004, 2005, 2005a), that allow to
see impossibility of some physical phenomena and to restrict search space for
new physical theories in general and for variations of quantum mechanics in
particular.

Impacts on quantum information processing and communication
technology: Quantum informatics helps to discover and analyse power of quan-
tum information processing primitives and their optimal use (see, for example,
Gruska (2005)); to see merits, potentials and limitations of the potential tech-
nologies also without doing experiments; and to discover ways to manage and
fool quantum decoherence.

Impacts on informatics itself: In a similar way as the development of
probability theory brought a variety of powerful method to solve problems of
“classical” (that is non-probabilistic in this context) mathematics and brought
powerful tools practically for all areas of science and technology in general, the
development of quantum informatics can be expected to bring (and already
brings) a variety of paradigms, methods and tools that can be used to deal
with problems of classical informatics for and also many areas of science and
technology, especially for those dealing with microworld. Some of the first ex-
amples how one can use quantum tools to solve non-quantum problems have
been demonstrated by de Wolf (2005). Moreover, taking into consideration that
computation, communication, security and feasibility are also physical concepts,
in a way, quantum informatics allows also informatics to meet its main goals in
a more proper way.

10 Conclusion

The development of quantum information processing science and technology
has come to the point that in order to make further significant progress in
this area a new view is needed and pursued concerning the overall aims, scope,
methods, primitives of the underlying sciences and technologies that need to be
developed. Pursuing much more paradigms, viewpoints, methods, and tools of
quantum informatics is one of the ways to go.
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