Theoretical Computer Science 71 (1990) 47-77 47
North - Holland

SYNTHESIS, STRUCTURE AND POWER OF SYSTOLIC
COMPUTATIONS

Jozef GRUSKA

Institute of Technical Cvbernetics, Slovak Academy of Sciences, Dubravska 9. 842 37 Bratidlara,
zechoslovakia

Abstract. A vanety of problem related to systolic architectures, systems, models and computations
are discussed. The emphases are on theoretical problems of a broader interest. Main motivations
and interesting/important applications are also presented. The first par is devoted to problems
related to synthesis, transformations and simulations of systolic systems and architectures. In the
second part, the power and structure of tree and linear array computations are studied in detail.
The goal is to survey main research directions. problems, methods and techniques in not too
Iommal a way.

1. Imtroductioa

Systolic architecture has been one of the most attractive ideas in computer
architecture so far. It is very appeaiing from the design point of view, because it is
based on repetiiions of simple processors, and on regularity, modularity and sim-
plicity of interconnections. Moreover, many systolic systems can be designed using
only very few types of processors, and also the repeated use of each input data in
svstolic systems significantly minimizes interaction with the memory of the host
computing environment. All these are also reasons why systolic architecture is so
suitable to make full use of the great potential of VLSI technology. Due to its
simplicity, modularity and repeatability, systolic architecture also offers transparent,
understandable and manageable, but still quite powerful, parallelism. Intricacy of
data and communication flow in many systolic systems, offer the magic so useful
and necessary to attract larger groups of designers to the idea. At the same time, a
large variety of interesting theoretical problems of fundamental importance, and
broader implications, have arisen in connection with the synthesis, analysis, and
implementation of systolic and related systems and computations.

Systolic systems can be seen as an interesting and useful modification (sim-
plification mostly), of the cellular automata concept of von Neumann, with more
empbhasis on regularity and transparency of data and computation fiow. New models
and new problems have been motivated mainly by advances in technology. Similarity
with cellular automata has immediately brought into use a whole bunch of theoretical
techniques to study systolic aichitectures, systems and computations. Gn the other
hand, systolic architecture is a natura! modification (generalization mostly) of

0304-3975/90/$3.50 © 1990, Elsevier Science Publishers B. V. (North-Holland)

48 J. Gruska

pipelining—the architecturai concept that has contributed so iiuch in recent vears
to the significant increase in performance of modern computers. The creation of a
quite general model of a practically important concept has been once again an
important tool leading to a new quaiity—this time in computer architecture and
supercomputing. This has, in turn, brought a new set of powerful formal methods
into computer architecture.

Two of the most powerful recent concepts in computer architecture, systolic
systems by H. T. Kung and RISC architecture by J. Cocke, have guite similar genests.
Both autlors arrived at their ideas which are of major importance for computer
architecture, by doing mainly theoretical research in quite remote areas of computer
science and having in common mainly a long term search for improving efficiency.

The first and nowadays seminal systolic systems by Kung and Leiserson—for
matrix multiplication aiad LR-decomposition—appeared in 1978. Since then various
systolic systems have been designed. Several systolic system implementation patents
have been taken in various countries.

Most of the systolic systems have been designed using ad hoc methods and in
many cases very similar systolic systems have been designed for seemingly quite
different problems. This has naturally led to intensive research oriented to develop-
ping systematic and sufficiently automatizable methods to synthesise systolic systems
from high level specifications. Significant progress has been achieved in this direction
and several systolic system design methodologies are also discussed in this paper.
The method due to Ibarra and his coworkers [49, 48] deserves special attention.
Inspite of being theory oriented and inspired, this method is very powerful and
allows the design of systolic systems of various architectures to be reduced to the
design of sequential programs for various simple sequential machines—a long time
desire in the area of parallel computations. 'n addition, various theoretically justified,
systolic system transformation techniques and systolic architecture simulation tech-
niques have been developed. They also contribute significantly to the improvement
and efficiency of systolic system design methodologies [71, 3].

The path from systolic systems, represented by attractive but still very high level
abstract networks, to real and efficient implementations is long, indirect, and far
from easy. In order to obtain really useful VLSI implementations, various tradeoffs
and design modifications have to be considered [34, 29, 68, 85], and really very
high density integrated circuits are required. All this can be seen 5n perhaps the
main project in this area, the warp machine at CMU. This machine consists of a
linear array of programmable processors that have been designed in such a way
that the whole array can implement efficiently various systolic systems especially
for vision and signal processing computations. This project indicates especially well
how long and complicated is the way from a simple though powerful idea t0 a really
successful machine. Implcmentation problems have also led to some interesting
theoretical problems.

VLSI implementations are not the only way to make use of the advantages of
systolic systems. For several reasons they are also very suitable for effective simula-

Svst~Yic compurasions 49

tions on current multiprocessor systems, for example multitransputer systems. This
has led to attempts to develop systolic programming methodologies, programining
languages and environments [32].

There have also been numerous attempts to develop and study various abstract
models cof systolic systems and computations and this will be our main interest in
this paper. The models are of various degrees of abstraction and often far more
general than a naive view of systolic systems, deduced from main examples, would
suggest. The range of problems to be investigated for a particular model is partly
determined by the generality and the abstraction of the model, but mainly by our
desire to improve our insight and knowledge concerning synthesis, behavior and
analysis of systolic architectures, systems and computations and to improve our
methodology for dealing with them.

The concept of topological transformation, as a formalization of time-space
transformations, is a very useful tool to study various probiems in ithe area of systolic
computations, especially in the area of simulations of systolic architectures and
transformations of systolic systems. Various results useful for the design and syn-
thesis of systolic systems have also been obtained using this tool. Of special
importance are results conceming the removal of broadcasting and the -placement
of two-way communications by one-way, with minimal time overhead. Two special
transformations, retiming and slowdown, are nowadays powerful tools for design
of netwcrks. Simulation results presented here concentrate on simulatisa cf one
parailel architecture on another one, on emulation of large networks on smaller
ones and on a “universal™ one.

Parallel automata of several types—mainly array, trellis and tree-like networks
of finite automata {cften memoryless)—have been the main theoretical models used
to study various basic problems concerning systolic architectures, systems and
computations: the power of various interconnections, the power of one-way and
two-way communications, the power of difierent communication modes with the
environment (input/output) and the power of various types of nonhomogeneity.
Some of these networks—two-dimensional arrays, trellises and trees—and some
types of inputs are shown in Fig. 1.

. Q_Q_Q_ -<5b -.by 0.3

R::=y

al 32 8

Fig. 1.

50 J. Gruska

Time-space transformations of 'inear array computations led to the study of other
and even more abstract models of systoiic coinputations—itwo-dimensional infinite
words of special types—that are also of a more general interest. Main attention has
teen devoted so far to the study of infinite two-dimensional woras that form so
called generalized Pascal triangles over arbitrary algebras of the signature (1, 1, 2).
They have a rich structure that has allowed various interesting results to be derived
concerning linear array computations and their relations with the properties of the
underlying algebras.

Cellular automata in general and linear arrays in particular have also been
considered as models suitable to study behaviour of complex systems and also as
new models of the physical world [84, 90, 92]. Models and results motivated
originally by our desire to master parallel computations may also be very useful to
obtain deeper results in these new and fundamental investigations.

There are several other surveys on theoretical ‘ssues related to systolic computa-
tions [37, 43, 87].

2. Systolic systems

There have been several attempts to find a formal definition of systolic systems,
for example in [26]. The most fruitful so far is the one given in [70], though at first
sight it does not look that way because it is very general. A slight modification of
this definition and related theoretical developments and applications are discussed
in this section.

Definition 2.1. A semisystolic system S =(V, E, 8, D, w) is an oriented multigraph,
with the set of nodes V, the set of edges E, the data domain D, the processor
mapping 7 that associates with each node ve V of the indegree p> 0, a function
7(v): D” - D, and the delay mapping &: E - N (the set of nonnegative integers)
such that if 3 is extended in a natural way to map also paths of S into N, then
8(p)>0 for any cycle p. (5(e) represents the number of the delay-one registers on
the edge e. and the requirement 8(p) >0 excludes the existence of networks with
“unlimited rippling™.) The nodes of V of the indegree {outdegree) 0 are called the
input (output) nodes or processors of S. If 5(e)>0 for any e € E, then S is called
a systolic system.

An informal description of the behaviour of a semisystolic system $ is similar 1o
that of a synchronous network working in discrete time. At each moment of the
discrete time, each node and also each register output either a value from D or a
don’t care element, say (‘#°). In the case of the register it is the same value as it
was at the previous time step on the output of its predecessor (i.e. of the preceding
register on the same edge, if there is one, or of the outgoing node of that edge). In
the case of the input node it is a value submitted from the environment. Finally, in
the case of a node v of the indegree p > 0, the corresponding processor outputs the

Svstoiic compuiations s

vaiue of the funciion 7 (v) applied to the arguments produced by its predecessors
(registers or nodes) on all ingoing edges at the previous time steps. Moreover, it is
assumed that all registers have an “initial value™ to start a computation.

1t has turned out that in order to be able to deal more precisely with semisystolic
systems, especially to formulate precisely the impacts of various transformations,
and to develop synthesis techniques, a more rigorous treatment of their semantics
is r eeded.

One way of defining semantics of a semisystolic system § is to associate a “‘time
function™ with each node cf S {5]. By that we mean an arbitrary partial function
from Z (the set of all integers) to D, that is defined only for finitely many negative
integers. (The intended interpretation is thai the value of the time function associated
with a node v, and an argament ¢, is exactly the value produced by processor in v
at the time «.) This can be done as follows.

Let V, be the set of input nodes ui 5. Let us first assign a time function 7. to
each input node ve V,. The semantics of S, with respect to the given input time
functions, is then a mapping @ of nades of V into time functions, such that #(v) = 7,
for any ve V,, and for all other nodes v, ®(v) is the minimal fix-point solution of
the semantic c¢Guations of S. These semantic equations, one for each non-input node
of S, relate, in a natural way, through functions associated with node-processors,
the time function of each node with time functions of its predecessors on all ingoing
edges.

Two types of transformations on semisystolic systems are of special importance:
slowdown transformations and retiming transformations.

If ke N' = N —{0}, then the k-slowdown transformation of a semisystolic system
S=(V, E, 5, D, =) results in the semisystolic system $**’=(V, E, §'*', D, =), where
5'"'(e) = kd(e), for any e € E. A retiming transformation of S is given by any mapping
r: V- Z such that for any edge e:u = v, 8(e}~+r{r) - {4} > 0. The resulting semi-
systolic system is S, =(V, E, &, D,), where §,(e)=8(e)+r(v)—riu) for any
edge e:u->n.

In order to define the effect of the slowdown and the retiming transformations
we need to introduce two sets of operators on time functions, parametrized by
positive integers k:

(1) delay operators 6" such that (o‘f)(') = F(t~k) for any ¢;

(2) spread operators 2* such that (2%f)(kt)=f(1) for any ¢, and undefined
otherwise.

Theorem 2.2. Let S=(V, E, 8, D, w) be a semisystolic system. Let ®,={f.|ve V,}
be a set of time functions associated with input nodes of S. Let & ={f.|ve V} be the
least fix-point semantics of S with respect to @, .

(1) If k>0, then X' ={2" |ve V} is the least fix-point semantics of the
k-slowdown semisystolic system S'*’ with respect to the input time functions 2f, for
veV,.

52 J Giastu

(2 If r is a retiming transformation of S, then ®,={0"""'f,|ve V} is the least
Jfix-gnint semantics of the retimed semisystolic system S,, with respect to the input time
Sunctizns 0"°'f, for ve V,.

It is often easier to design a semisystclic system for solving a problem thau a
systolic one. The main reascn for that is that in semisystolic systems one can use
broadcasting to transmit data without any delay, wherever they are needed. Because
of thai, semisystclic systems are often more transpareni. On the other hand, the
ecistence of delay-itee interconnections requires an incrrasc in the length of the
ctock cycle. it is therefore very desirable to be ablc (¢ transform semisystolic systems
into systolic ones with the same interconnection structure. Necessary and sufficient
conditions for the existc ice of retiming transformations capable of doing that are
well known {71). The i<mo*ing of broadcasting is the main use of retiming transfor-
mations. For some saun:isvsiolic systems S there is no retiming transformution to
obtain a systolic system fiom S, but if iirst a proper slowdown transfor maiio.: is.
applied to S, then the resuiting semisystolic system can be retimed to obtain a
systolic one. This is the main use of slowdown transformations. in this way quite
a few well known and tricky systolic systems can be easily obtained from very
naturai networks.

Example 2.3. Let A={a,} be an n x n matrix such that its LU-decomposition into
a lower triangular matrix L = {I;} with 1s in the main diagonal, and into an upper
diagonal matrix U = {u,;} can be computed by Gaussian elimination without pivoting.
The elements of matrices L and U can be computed according to the following
recurrences:
ay=a;, ak=ay"'-lLu,
a :‘k-l k-1 - .
li=—=, wi=ay , k=12,....n k<ismk<jsn
ax
It is now easy to see that LU-decomposition of A, for the case n = 4, can be computed
by the semisystolic system and the flow of data as shown in Fig. 2 [62]. Computations

x
i -1
X
X Z4xy X
e
y z
X x
()]

(a) 1 32 3 W
Fig. 2.

Systolic computations 53

performed by four types of processors are shown in Fig. 2(b). kach diagonal has
one register, verticai and horizontal edges have none.

There is no way to rctime this semisystolic system to obtain a systolic one. On
the other hand if at first the 3-slowdown transformation is applied, then it is easy
to retime the resulting system in such a way that each edge has exactly one register.
After some cosmetic changes one then quite easily obtains the well known systolic
system of Kung and Leiserson [54] with quite tricky flow of computativi.

Retiming transformations can also be used to optimize synchronous networks
with respect 1~ varic :s cost criteria. For example, to minimize the clock cycle for
the case when time needed to p.oform processing in each node is given, or to
minimize the total numbe: of rcgisiers. These optimizztion problems lead to various
linear programming problems for which efficient algorithms are known [71]. Retim-
ing transformations cc .1 »!sa b use 3 to deal with various problems concerning two
level pipelining and fault-i-.icrancze ; <2, 53]

Based oa the model of semisystolic systems discussed in this section [70], the
concept of 2 systolic flowchart sct-:me has been introduced in [2] to study syntactical
progerties of systolic systems. Equational axiomatization of such systolic lowchart
schemes has been presented in [2]. Systolic flowchart schemes and their interpreta-
tions have been considered to be an algebraic framework useful for the study of
systolic systems {3].

In [39], quite a different tvpe of transformations of systolic networks is considered.
They preserve timing of systolic computation flows but they may change topology
of the underlying network. These transformations can also be used as a quite
powerful systolic system design methodology.

3. Systolic system design methodologies

Transformations presented in the previnus section represent powerful systolic
system design tools. On a different level of abstraction, several, though quite
restricted, design methodologies can be abstracted from the proofs of theorems
dealing with the power of various classes of systolic automata (see Sections 5 and
6). These results allow, for example, the automatic design of a systoiic treliis
automaton to recognize any language being an intersection of a finite set of linear
languages, directly from linear grammars that generate these languages.

Starting with [88] a variety of more or less formal techniques for systematic design
of systolic systems has appeared [5, 15, 23, 28, 42, 69, 72-75, 77, 80]. Three of them
are discussed now in more detail.

Ibarra and his co-workers have developed several characterizations of networks
(of various architectures) of finite automata in terms of variants of sequential Turing
machines. These characterizations are a base for a powerful design methodology.

One characterization is in terms of so-called full scan Turing machines (STM).
There are actually several such machines, each for a different class of finite automata

54 J. Gruskua

networks. They differ in the initial configurations, in positions where they read new
input symbols, and how they react to endmarkers [49, 37]. We shall consider here
only two of them, STM“ and STM'. A STM M is a one-tape, one-head Turing
machine with the external input (Fig. 3) to receive input words a, ... a,S, where
a,€ 2, and $ is not in the input alphabet 2. M begins a computation in the initial
state q,, and keeps performing right-to-left and left-to-right sweeps. An input is
accepted if M writes ar accepting symbnl (from a I'y < T, the tape alphabet). Figure
3b shows the initial configurations for STM® and STM" and complete sweeps. “R"
shows where the reading of the external input takes place. “w™ above a square
emphasizes that some writing into that square occurs and “w(8)” above a square
indicates that “$” is written into that square as soon as it is read from the externcl
input. During their left-to-right sweeps STM always stay in a special state a,, do
not change tape contents and keep moving right until they meet $ or the blank
symbol A. During right-to-left sweeps STM mav change tape contents and states
but they enter the state g, if and only if they come to the square with $ or A, then
always a left-to-right sweep starts. The sweep complexity of M on an input is the least
number of complete sweeps needed to accept the input.

The following theorem [49, 50] relates STM® and STM® with systolic trellis
automata with diagonal and vertical acceptance [37] (Fig. 4). These automata have

e STV w R, W($)

-=Ja[a[af--- Al x|---] 2|3
h R W($)

| |
3 a...3, # snd
i N (1 1 X F3
—%
(a) (b)
Fig. 3

3, Aay;daz13,l ag A

Fig. 4.

Siainlic codiiputation: 55

the form of an infinite network of identical memoryless processors, with the (ransition
function 2 such that g(A, A) = A. They actually represent time-space transformation
of linear array computations, and therefore ike following theorem can easily be
reformulated in such terms.

Theorem 3.1. (1) A language L is accepted by a systolic trellis automaton with vertical
acceptance in time 2T(n)—~ 1, if and only if it is accepted by a STM' with the sweep
complexity T(n). ‘

(2) A language L is accepted by a systolic trellis automaton with diagonal acceptance
in time T(n), if and onlv if L is accepted by a STM? witk: the sweep complexit: T(n).

While the previous theerem characterizes systolic automata (or linear arrays) as
acceptors, the following one characterizes one-way two-dimensional cellular
automata (O2DCA)} as transducers (Fig. 5) in terms of so-called two-dimensional
scquential machines (2DSM) (Fig. 6) [43, 48].

A 2DSM M with the input of n symbols operates on a two-dimensional tape of
r. x n squares. Initially all squares contain the symbol A. Similarly as for STM,
2DSM also operate in sweeps. A sweep begins with M in a distinguished state g,
and with the head on the leftmost square of tke :opmost row. M then reads an
input symbol and moves through squares of the first row, frosn left to sight, rewriting
symbols and changing states (except into q,) as a Turing machine does. After the
rightmost square is visited, the head is reset to the first square of the next row in

fb....b, b

$ a....3; 3y

Fig. S.

fa...aya —4q 1 ¢ By - -0y by
/—>—-n--.
2 — A
AL -- [AlA):
11 |a
A ':
1

56 J. Gruska

the state g,. This action is repeated fo1 all rows. At each step, new symbo! and ncw
state depend on the previous state, on the old symbol in the sgua: ¢ being scanned
and, if there is any, alsc . 2 th= syaivol stored in the square just above the scanned
square. After scanuung th:c iast sqt1re of the last row an output symbol is produced,
and M is reset to the first square of the first row to star. the next sweep. M is said
to have sweep complexity S(n) on an input aq, ... a,$ if it outputs $ after at most
S(n) sweeps.

Theorem 3.2 (Ibarra [43]). Let S(n)=n+1. A 2DSM with sweep complexity S(n)
can be simulated by a O2DCA in time S(n)+2n -2, and conversely.

There are many other characterizations of array computations in terms of sequen-
tial machines. They have been used to derive new and efficient systolic systems for
those tasks for wkich no such systolic systems are yet known. (No other design
methodology has been so successful.) For example, the last theorem has been used
to show that recognition and parsing of context-free ianguages can be done on
O2DCA in linear time [16]. These characterizations have also been used to obtain
new theoretical results. For example a generalization of Theorem 3.2 to higher
dimension has been used to show [43] that (k+1)-head nondeterministic finite
automata can be simulated by a O2DCA in time (k+1)n+k—1.

The second important class of systolic system design methodologies consists of
various data dependence graph manipulating strategies. The main idea is to analyse
a data dependence graph and then to transform it into the equivalent one that
satisfies certain constraints that are natural abstractions of systolic and VLS! require-
ments. Methodologies of this type [36, 77, 79, 80, 83] have been especially successful
for the design of systolic systems for matrix cor.:putations because in such cases
one can natuially associate operations of computations with integer points of three-
or four-dimensional space (see Fig. 7 for the data dependence graph for multiplica-
tion of matrices of degree 2, i.e. ¢; = 23 . a.by;).

In order to obtain more easy manipulable data dependence graphs, with only
local interconnections, a slight modification of basic algorithms is usually useful—
this results mainly in the introduction of some forms of pipelining of input data.

Fig. 7.

tn
~4

Svspelic compur tians

For matrix multiplication it has, for example, the form:
cli,j,k)=cli,j,k—1)+alij k- t)eu—1j k),
«{ T k)y=ali,j—-1,k),
b(i, j, Ky =b(i—1,], k).

Various geometric transformations, e.g. affine transformations of data dependence
graphs [23], followed by their projection intcv a plane or a line, result ia a variety
of two- or one-dimension:! sysiems.

The main problem is how to find, in a sufficiently systematic way, suitable
transformations and projections. There have been artempts to solve this problem
for computation tasks specified by some restricted specification languages. Perhaps
the best known is the method developed by Quiaton [77). It can be applied to the
design of systolic systems for computations that can be expressed as a set of uniform
reccurent equaticns

U2V =f(Ul(z-0,),...,U,z-6,))
U:(:)z U:(:-Oz)

(1)

Uz)=Uy(z-6,)

over a convex set D of integer coordinates of the n-dimensional space. f is a p-nary
function, and 6,, ..., J, are “dependence vectors™ from Z".

Quinton’s method consists of two steps:

(i) to find a timing function t: D> N, i.e. a schedule of computation that is
compatible with dependences resulting from the equations (1);

(ii) to find an allocation function a:Z" - Z" that maps D into a finite set of
integer points, that represent positions of processors of a systolic system, in such a
way that concurrent computations are mapped intc different processors and resulting
interconnections of processors, as well as data flows, are sufficiently regular.

In [77] necessary and sufficient conditions are given for a quasi-affine timing
Sunction

1(2)=|a"z—al, weQ", acQ (setofrationals) 2)

to satisfy all above mentioned requirements. These conditions allow 7 and « to be
chosen.

Once 1 is fixed. the task is to find an aliocatien function a such that a(D) is
finite, and a(x)=a(y) > t(x) # (¥} if x, y are in D. In [77] it is shown how to find
a quasilinear allocation function. This function actually represents a projection of
D along a properly chosen vector—a ray for D.

There have been many modifications and generalizations of this approach [36.
79, 80, 83]. Interactive software systems for the design of systolic system have also

J. Gruska

b 2en muil ca this base (sysiem DIASTOL in [28] and system S* in [83].) Of special
interest 1s the approach developed by Sedukhin [80-83]. His goal has been to develop
& methodology for finding all (in a reascnable sense) systolic systems for a given
computational problem specified in some more general specification language. It is
the language of recurrence equations with linear dependences

g(p)=f(g(p—6,),8(p—0,),...,8(p—6k)) 3)
where again p and 0,, ..., 8, arc vectors from Z" and
p-6,=Ap+b, forj=1,...,k

where A; are constant n x n matrices and b; are vectors from Z". In the case that
the rank of the matrix is n — 1, which is the case for practically all known examples,
then there is a method [80] to transform (3) into the pipelined form (1) with constant
dependence vectors.

The vector 7 and the constant a from the timing function in (2) can also be
obtained by solving an appropriate number of equations

where t(z;), for points z;, can be determined from the dependence graph by the
maximal distance of the point z; from the node representing the start of the
computation process. After the timing function is specified, the next step is to project
the data dependency graph along all directions that are not parallel to the hyperplane
defined by the timing function and therchy all possible systolic architectures are
obtained. For that it is of course important that projections preserve the nearest
neighbour property and for that it is sufficient to consider as projection vectors u,
only vectors with coordinates —1, 0, 1. After excluding the null and symmetric
directions of projection vectors, then the number of projections, and therefore of
potentially different systolic systems, is (3" —1)/2 which gives 13 for the most
common case =3 and 4 for n = 2. The projections of nodes of the data dependence
graph have to be conflict-free, with respzct to the timing function, but this is achieved
3 52OTS ATt IOL paraiith 1o Iht iming hyprrpiane, 3.t 3 the stalar produ 7,
p) is not zero. In [80-83], all systolic systems for matrix multiplication (13),
LU-decomposition (13), the algebraic path problem (9), and discrete Fourier trans-
formation (4) are derived, including some not previously known. Software system
§* (System of Systolic Structure Synthesis) (see [83]) generaies the set of possible
transformations at each step of the systolic system synthesis processes and also
provides tools for selecting “the best™ systolic system.

Systolic system verification techniques are also an important part of systolic system
design methodoiogies. One very natural idea [55] is to make use of the regularity
of network interconnections and the regularity of data and computation flow. In
many cases both the position of processors and the positions of data in data streams
can, at any time moment, be naturally represented by integer points in the two-
dimensional plane. This allows expression of the relation between the data and their

Systolic computations

L d
T d

€13

€22

r'd
< [y]
S &
S
Q
™
& 3
3
B
F
o~
b
[y}
~ - &
NS 5
N on e am em wm e
b—
(&)

59

(&

—

P o e - v o -

Fig. 8.

60 J. Gruska

positicns at different timme-moments by so-called space-time-date equations and these
equations can then be used to show that correct data arrive at the processors at the
-orrect time and on this basis the correctness of the whole systolic system is shown.

Example. The well-known systolic system [54] for multiplication of matrices of an
arbitrary degree but witk bandwidth 4 is shown in Fig. 8. If the proper coordinate
system is chosen (represented by the dotted lines in Fig. 8), then space-time-data
equations for the movement of elements a; of the matrix A, which relate the indices
i, j and the coordinates (x, y) of position a; in time ¢, have the form

x—j—i=0,
y—i—2j+2—1=0.

Similar space-timz-data equations can cazily be derived for the movement of the
elements of the matrices B and C. Using these equations one can show that whenever
a c¢; arrives at a processor, then it meets there the proper elements of matrices A
and B to make the computation that is needed.

More formai and semantics theory based development of systolic system design
and verification framework is given in [38, 67, 78]. In [67, 89}, it is shown how to
develop and prove correctness of some systolic systems in the framework of aigebra
of communicating processes. In [78] trace theory framework is used to discuss and
develop systclic systems in terms of their input/output behaviour.

4. Simulatioas

Simulation problems of three types are of great impertance for the design of
parallel networks.

(1) How to simulate efficiently networks of one parallel architccture on networks
of another parallel architecture. It often happens that it is easier to design an
algorithm for implementation on a particular architecture (e.g. on two-directional
cellular rings), than on a slightly different architecture (on one-directional cellular
rings), networks of which are physically easier to implement. Therefore any technique
that shows how to simulate systematically and efficiently, networks of one parallel
architecture on another architecture, represents an important network design tool.

(2) How to simulate efficiently large networks on smaller networks of the same
parallel architecture. If one has to design a network for solving a particular problem,
then it is usually very convenient to choose a network of the size that just matches
the size of a given problem. This requires arbitrarily large networks to be considered.
On the other hand, the size of available multiprocessor networks is, in practice,
either fixed or with a severe upper bound.

(3) How to simulate, time and/or space efficiently, networks of a given parallel
architecture on various models of sequential machines.

Syerolic compmations 61

Quite a general concept of simulation (of one network on another) has been
defined in [9]. It describes the case where one processor of a network N, may be
simulated at different time moments by different processors of a network N, and,
moreover, that an edge connection of N, is simulated by the whole path in N.. In
many cases it is, however, sufficient to use two simpler concepts of simulation:
partial emulation and emulation.

Informally, a network N. partiaily emulates a network N,, if to each processor
P of N, a processor P’ in N, can be associated in such a way that any computation
on P in N, is simulated by a compatation on P’ in N,. Similarly, N, emulates N,
if to each processor P in N, a processor u(P) in N, can be associated in such a
way that for each edge e: P,—» P, in N,, any communication along e is simulates
by a communication along an edge from u(Py) to u(P-).

An emulatior of N, on N, is cailed computationally uniform if the same number
of processors of N, are mapped into each processor of N,, and also the same
number of edges of N, are mapped into each edge of N,.

The concepts of unrolling and of the isumorphism of unrcliings are important to
establish simulaticn results. Informally, the unrolling of a network N with a set of
nodes V, is the time-space transformation of the computational process or, in other
words, an infinite data dependence graph with nodes (v, 1), where ve V and ¢
represents time. Isomorphism of unrollings is then the usual graph isomorphism.

Example (Culik and Fris [8]). Simulation between homogeneous networks on two-
directional cellular rings (CR,,) (Fig. 9a) and homogeneous one-directional cellular
rings (OCR,) of n processors. Emulation of OCR,, on CR,, is trivial. In order to
obtzin a simulation in the opposite direction we proceed as follows: Let C, be the
network with n nodes, where 2ach node v,, j=1, 2,..., n is connected with nodes
U, V1> U2 by edges with the delay 1 (where @ means the addition modulo n)
(see Fig. 9b for C,). The unrollings of CR,, and C,, are isomorphic; the isomorphism
is established by the mapping &:(v,1)=(r,.,,). This implies that each
homogeneous network on CR, is sirtulated in real time on C, and vice versa.

(a) L) 9

Fig. 9.

62 J. Gruska

Morecer, C, can clearly be partially emulatec on OCR,, in such a way that some
edges of C, are simulated by paths cf length 2 on OCR,,.

Similar simulations have been established between two-directional cellular arrays,
one-directional cellular toroids and two-directional cellular toroids [8].

In connection with the study of complex systems the concept of totalistic CA has
been introduced [91, 92] and investigated in various papers. A totalistic CA is a
CA states of which are integers and a new state of a processor depends only on the
sum of the old states of the processor and of its neighbours. It has been shown in
[1] that for each CA C there exists a totalistic CA C’ which simulates C without
loss of time. This result has been generalized in [21] for cellular automata over
arbitrary graphs.

Another interesting problem is to determine all possible computationally uniform
emulations of large networks on smaller ones. It has been shown [4] that the number
of computationally uniform emulations of CR, on CR,,, (as well as of two-
dimensional cellular toroids of the size nxn on toroids of the size inxin) is
exponential (at least exponential). On the other hand, there are exactly six computa-
tionally uniform emulations of perfect shuffle networks of 2" nodes on networks of
2"7" nodes.

Another important problem is to find, for important classes of networks, say C,
another class of networks, say C’, such that on any network from C’, every network
from C can be emulated in a computationally uniform, or almost uniform, way. If
such a class C’ exists, then a fixed-size multiprocessor system with a network from
C’ can be used to emulate almost uniformly any multiprocessor system with a
network from C; it is ~nly necessary to sufficiently enlarge the memory of the
processors and the width of the interconnections.

For rectangular arrays, such a class of networks, so-called polymorphic arrays, has
been shown in [35]. They are borderless networks B, of arrays of the size S, = F, x L,
where

F|=l, F2=l$ Fj=ﬁ-|+F}_2 forj>2
are Fibonacci numbers and
L|=1, L2=2, Lj=Lj_|+Lj_2 fOI'j>2
are Lucas numbers, and a processor of B, in the position (i, j) is connected with
processors in the nodes
((i+1)mod F,,(j+1)mod L,), ((i—1)mod F,,(j—1)mod L,),
((i+1)mod F,,(j—1)mod L,), ((i-1)mod F,,(j+1)mod L,).
It has been shown in [35], that on a2y such network B,, any rectangular array C
with at most S,/V5 proccssors, can be emulated in such a way that into each
processor of B,, at most one processor of C is mapped, and , moreover, arbitrarily

large rectangular array C’ can be emulated by B, in such a way that the number
of processors of C’ mapped into one processor of B, differs at most by O(log S,).

Sistolic compuiatinyg: 63

The last issue we deal with in this section concerns simulations of parallel networks
on sequential machines. The following theorems summarize some results concerning
simulations of arrays, trellises and tree networks on Turing machines and RAMs.

Theorem 4.1 (Chang et al. [17]). (1) Any language accepted by a one-directional
cellular tree network can be accepted by a deterministic Turing machine in space
(log® n)/(log log n).

(2) Any language accepted bv a one-directional cellular trellis network can be
accepted by a deterministic Turing machine in space nvn.

(3) Any language accepted by a k-dimensional cellular array (of n* processors) can
be accepted by a deterministic Turing machine in space n°> '’*.

Theorem 4.2 (Ibarra [43], Cerny and Gruska [10]). (1) Any lunguage accepted by
a two-way k-dimensionai cellular array can be accepted by a RAM in time
O(n“'/log "(uuk)_

(2) Any language accepted by regular {modular} [regular and modular)
(homogeneous) real-time trellis automaton can be acccpted by a one-tape Turing
machine in time O(n’), {O(n° log n)}, [O(nViog n)], (O(n?)).

(Regular and modular trellis automata are defined in Section 6.)

5. Power of tree computatioas

One of the main goals in parallel computations is to do as much as possible in
(poly)logarithmic time From this point of view tree networks of finite automata
are perhaps the very basic model to investigate.

Two basic types of networks of finite automata have been intensively investigated.
In both cases the underlying interconnection structure is an infinite leafless tree that
is regular and nondegenerate in some reasonable way. In the case of iteraiive tree
automata (ITA) [24], sequential input (output) goes to (from) the root processor
(Fig. 1c) and only nonhomogeneous networks are of interest. We shall consider
here only the case where the underlying tree is balanced (i.e. each node has the
same number of sor..}, 2:d for all relevant i, ith sons of all nodes are identical. In
the case of systolic tree automata (STA), [94] the input is parallel (Fig. 1c), one
input symbol per processcr, and to the leftmost processors of the first level of
processors with enough processors. Processors are memoryless, flow of computation
is one-directional to the root, and most of the research has concentrated on the
study of STA as acceptors. Regularity condition from [94] requires that there are
only finitely many nonisomorphic subtrees and nondegenerativity condition requires
that there is a constant a > 1 such that the jth level has at least a’ nodes.

The following theorem [19, 24, 25] shows that ITA are very powerful. In this
theorem, by ITA(k) we denote ITA over a k-nary balanced tres aad by ITM a
modification of ITA with Turing machines instead of finite automata as processors.

64 J. Gruska

Theorem 5.1. (i) The family of languages accepted by 1TA in time T(n) is the same
as the family of languages accepted by iTM in time T(n).

(2) Any language accepted by a nondeterministic Turing machine in time T(n) can
be accepted by a 1TA(2) in time O(T(n)).

(3) The family of languages accepted by linear time and real time 1TA are identical.

(4) If 2< s <1, then the family of iunguages accepted by ITA(s) in linear time (in
real time) is identical (is smaller) than the family of languages accepted in linear time
(in real time) by ITA(t).

(5) The family of ianguages accepted in linear time by ITA contains all CFL, and
it is closed under Boolean operations, concatenation, Kieene closure and morphism.

In the above-mentioned model of ITA, and also of ITM, no restriction has been
made concerning the dzpth ot the trees really involved in particular computations,
and therefore actually exponentially many processors can be active during a compu-
tation. It is therefore of importance to investigate how much can be done within
depth-bounded ITA computations, i.e. computations on I TA where processors only
of a restricted distance from the root can bz used. Main results from [19; are
sumniarized in the following treorem wheie D(f(nj)-bounded ITA(k) denote
ITA(k), the depth of computaticn of which is bounded by f(n) for inputs of length
n

Theorem 5.2. (1) A D(T(n))-bounded ITM with each processor being an S(n)-space
bounded Turing machine, can be simulated by an D{(O(T(n))+log S(n))-bounded
ITA.

(2) S(n)-space bounded on-line Turing machines are equivalent 1o D(log S(n))-
bounded 1TA.

(3) Every CFL can be accepted by a D(O(log n))-bounded 1TA. Every deterministic
CFL can be accepted in linear time by an ITA.

Proof of 1he main results of the previous theorem is based on a clever simuiation
of pushdown stacks of size S(n) on D(log S(n))-bounded ITA. A similar idea is
used in [6] to implement such data structures as stacks, queues, priority Jueues,
deques, and dictionaries on D(log n)-bounded ITA in such a way that, except for
dictionary, all data structures have a unit response time. For dictionary operations
the response time is O(log n) but instructions can be pipelined to the root at constant
speed.

In the case of systolic tree automata [31, 94], attention has been paid so far to
automata over trees with a finite base. (It is defined as a finite tree, all leaves of
which have the same distance from the root (Fig. 10a-c).) An infinite leafless tree
T is said to be over the finite base b, in short T(b)-tree, if it can be obtained from
b by an infinite process at each step of which all leaves of the tree designed at the
previous step are replaced by b-trees (see Fig. 10ai-cl) for trees with bases from
Fig. 10a-c, respectively).

S\ siviic computa’ uns 6l

\o 66 dob

(a) (b) ()

/N

(cl)

(al) (bl)
Fig. 10.

t-nary balanced STA, in short (-STA, are a special case of T(b)-trees (see Fig.
10al). Let T(b)-STA denote the class of all systolic tree automata over T(b) and
£(T(b)-STA), the family of languages accepted by T(b)-STA.

The foliowing theorem summarizes relations between the recognition power of
T(b)-STA for various bases [30].

Theorem 5.3. (1) If s and t are (are not) powers of the same integer, then the families
£(s-STA) and £(1-STA) are identical (are incomparable).

(2) If the base b has s leaves, then £(s-STA)< £(T(b)-STA), and the equality
holds if and only if for any 0< i< h(k) (where h(b)) is the depth of b), the set of
prime divisors of the number of nodes of the ith level of b is a subset of prime divisors

of s.
The main results concerning the languages accepted by 2-STA are now presented.

Theorem 5.4. (1) The family £(2-STA) conains all regular languages, and also some
languages very high in the language hierarchies. It is closed under Boolean operations,
right concatenation with regular sets, restricted concatenation and selective concatena-
tion. It is not closed under left concatenation with regular set, Kleene closure, morphism
and e-free morphism.

(2) Nondeterminstic 2-STA are as powerful as deterministic.

(3) The emptiness, finiteness and equivalence problems are decidable.

66 J. Gruska

Dec’dability of the empiiness problem for general STA is an open problem closcly
related to well-known decision proolems from formal power series [11].

There is a characterization of balanced STA in terms of special Turing machines
[46]. This characterization allows closure properties of £(2-STA) to be proved using
standard sequential computation iechniques.

There are various modifications of STA concepts. Some of them consider different
input modes. For example stable and superstable STA at which inputs can be
submitted to processors of any level with sufficiently many processors and also to
any chosen subsequence of processors at that level [11, 30]). STA where each input
is first permuted (by a host) are considered in [40] and STA with an (infinite)
program (represented by an infinite word, the initial part of which, of the same
length as a given input word, is supplied to inputs of processors in parallel with
the input word) are swudied in [41]. Nonhomogeneous STA where each node-
processor uniquely determines sons’ processors are shown to be as powerful as
homogeneous ones. STA where each node is also connected to the left brother of
its left son and to the right brother of its right son, so called BC-trees, are investigated
in [27, 33].

Fast recognition of regular languages by STA is of special interest. They can also
be recognized by STA over finite trees with a feedbuck (which leads to an interesting
recognition of regular languages by programmable systolic trees) [22]. Problems
related to the optimization of STA as regular language recogn.zers are studied in
[51]. STA have also been investigated as transducers [20] to obtain fast implementa-
tions of finite state automata realisable functions.

6. Power and structure of limear array computations

One-dimensional arrays of finite automata and their computations have been
intensively investigated in the last years and the results siici that they are not only
a very basic model of parallel architecture but also a model with many interesting
properties and of broader impertanc: {or theory of compiiaiisi.

It has also turned out that many practically important compu:ational problems
can be solved sufficiently fast on linear arrays of simple processors [63, 65].

One-dimensional cellular automata (CA) have also been used as a basic model
to study general problems of complexity because they seem to captuse, in a reason-
able sense, cssential features responsible for complex behaviour of sytems composed
from simple elements. This is also closely connected with the approach considering
cellular automata as an alternative model of the physical world [84]. The uiderlying
goal is to extract from such a study some general features of such phenomena as
ihe self-organising behaviour, chaos and so on.

The importance of CA for such funiamental investigations and for the key
applications in computing makes it very desirable to obtain more insight into the

Sy aiulic computaiion 67

power and structure of linear array computations and to develop modcis and
concepts suitable for this purpose.

The power of cellular automata depends on the amount of computational resources
available (time, space, number of processors used), on the type of interconnections,
and on the type of input.

Two basic models investigated are shown in Fig. 11a, c. They are one-dimensional
cellular automata (with parallel input) and one-dimensional iterative arrays (with
serial input). Their one-directional versions (OCA and OlA) are shewn in Fig. 11b,
d. Perhaps the most interesting case is the one in which there is no additional
memory, i.e. for the input of the iength n only n finite automata are <ed. Such CA
and YA are called linear and denoted LCA and LIA (Fig. lle, f), and their
one-directional versions are denoted OLCA and OLIA.

SR O O ol NS
DD ©
§a,.. .33, _.,@ _,@__. cor _@_@_,om (@)
@,__@,_. LCA (e)

-

LIA (1)

Fig. 11.

The basic problem is to determine how powerful is one-way cummunication
(especially comparing with two-way communication) and what is the relation
between computation in rzzl-time (i.e. in time n for the input of the length n),
pseudo-real time (in the time 2a) and in linear time (in time cn for a constant c).
The following theorem summarizes recent results that show surprising power of
one-way communication and the relation of some of the open problems of this type
to other well-known problems (for example, to some closure properties).

Theorem 6.1. (1) OLCA accept exactly the same family of languages as OLIA [45].
(2) The family of languages accepted by OLIA is an AFL, it is closed under
intersection, complementation and reversal; it contains some PSPACE-complete
leaguages, all languages accepted: by linear-time bounded alternating TM, by
/;‘g-l.‘s:ace bounded nondeterministic TM and by multihead two-way nondeterministic
pushdown automata operating in c"’'**" time (and therefore all CFL) [18].

68 J. Gruska

(3) If 1< r<s, then the femily of languages accepted by OLIA in time n” is smaller
than the family of languages accepted by OLIA in time n* [18].

(4) The family of languages accepted by OLCA in linear-time is the same as the
family of languages accepted by OLIA in pseudo-real-time, and the same as the family
of languages accepted by LCA in real-:ime [45].

(5) The families of languages accepted by LCA in linear-time and by LCA in
real-time are identical, if and only if the class of languages accepted by LCA in real-time
is closed under reversal [44].

(6) If LCA are more powerful than OLCA, then nonlinear-time LCA are more

powerful than linear-time LCA [44).

The basic open problem is whether LCA are more powziful than OLCA.

A natural modification of the models of linear CA and [A is to consider models
where the amount of processor used is S(n) for an input of the length n. Various
results for these models have been obtained in [18] also for the case S(n)<n.

A time space transformation of CA is shown in Fig. 12. By discarding vertical
edges and adding processors on edge crossings we obtain the trellis network of
memoryless processors shown in Fig. 4. In the case of the vertical acceptance in
real-time we obtain so-called real-time trellis antomata (RTTA) (see Fig. 13). The
following theorem summarizes basic properties of the families of languages accepted
by RTTA and their nondeterministic versions [13, 14, 46).

Theorem 6.2. (1) The family of languages accepted by deterministic RTTA is the
abstract family of deterministic languages which contains all linear contexi-free
languages, some languages complete for polynomial time with respect 10 log-space

Fig. 13.

Svstolic computations 69

reducibility, and it is closed under Boolean operations, injective lengiih multiplving
morphism but not under morphism.

(2) The family of languages accepied by nondeterministic RTTA is an AFL that
contains all context-free languages, some NP-complete languages and it is ccntained
in DSPACE (n log n).

Real-time trellis automata are also 2 good model to study the power of various
input modifications. For example, it has been shown that superstable RTTA are as
powerful as ordinary ones [14]. Superstability requires that the acceptance does not
depend either on the level (or row) of processors at which an input is submitted or
on inputs of which processor symbols of an input word are submitted, provided
the order is preserved. In [40], it is shown that the power of RTTA can be increased
if input can be permutcd (for example, by the host) before processing begins, and
basic properties of languages accepted by RTTA with permuted inputs are invesu-
gated. The power of RTTA can also be increased if with any input of length n, the
prefix of the length n of a fixed infinite word (called program) is also submitted in
parallel to inputs of processors [41]. In [86], a special input mode for linear arrays,
called pipeline processing, has been considered.

A trellis automaton can formally be defined as a quintuple A=(3, I', I'', A, g),
where ¥ is the input alphabet, I' is the operating alphabet, A ', "< T, is the
accepting alphabet, and g:I' x I' - I is the transition function such that g{2 A} = A,
With the automaton A one can associate the algebra E = (I, I, r, *) of signature (1,
1, 2), where l(a)=g(A, a) and r(a)=g(a, A) forae I' - {A}, and a*b = g(a, b) for
a, be I' —{A}. Similarly with any algebra of signature (1, 1, 2) one can associate a
class of trellis automata that differ only in the input alphabet and in the accepting
alphabet.

With any algebrz E =(T, [, r, *#) of signature (1, 1, 2) and any word w = w,,... w, €
I'"*', one can associate the mapping GPT(E, w) that is defined on {(i, j)|ie N,
je N, i+j=n} as follows:

GPT(E, w)(ij)=w, ifitj=n,

GPT(E, w)(0, /) = (GPT(E, w)(0,j— 1)) "ifj>n,

GPT(E, w)(i,0) = r(GPT(E,w)(i—1,0)) ifi>n,

GPT(E, w)(i,j) = (GPT(E, w)(i - 1,j))*(GPT(E, w)(i,j - 1))
ifi+j>nij#0.

The mapping GPT(E, w) is called the generalized Pascal triangle over (the
algebra) E and (the word) w, and it can be depicted in the foym shown in Fig. 14,
where w,; = GPT(E, w)(i, j). GPT(F, 1) for the algebra E=(N, id, id, +) is the usual
Pascal triangle, and for the algebra E = ({0, 1}, id, id, ®), with @ being the addition
modulo 2, the GPT (E, 1) is shown in Fig. 15.

70 J. Gruska

% n o Wn-1m- W1

¥.,1 Y0

om0l Whi1,1%2,0
uU , n+3"l N L SR wn4»2 R lun+3 ,0

Fig. 14.

1
11
101
1111
10001
110011
1010101
11111111
100000001

Fig. 15.

Generalized Pascal triangles can also been seen as special two-dimensional infinite
words that can be considered as a new abstract model of linear array cumputations.
This new model naturally gives a rise to a new set of problems, for example:

(1) What is the structure of diagonals, columns and other components of GPT?

(2) What can be said about the density of occurrences of elements in GPT?

(3) When are the basic decision problems concerning the structure of GPT
decidable? (For example the problem to determine whether a given symbol (a2 word
or a pattern) occurs at least once (or infinitely often) in a given GPT.)

(4) What are the conditions for a complete GPT(E, w) to have the so-called
self-embedding property (i.e. that there exist integers p, g such that GPT(E, w)(i+p,
i+ q)=GPT(E, w)(i, j) for any i, j in N)?

(5) With any GPT one can associate the language of row-words. What are the
properties of such languages?

All these problems are related to basic problems concerning linear array computa-
tions. In this way the model of generalized Pascal triangles brings new techniques
into the study of linear array computations. It also relates structural and com-
binatorial properties of GPT (anc thereby also of linear array computations) and
algebraic properties of the underlying algebras.

Generalized Pascal triangles have recently been intensively investigated especially
by Korec [59]. Some of the results are now presented.

Svstolic compututions 71

In order to study properties of diagonals of GPT, it is convenient io consider
instead of algebras E=(A, I, r, *) of the signature {1, 1, 2), the algebras E'=(A, K,
I, r, *) of the signature (0, 1, 1, 2), and to consider GPT(E’, K), in short GPT(E’),
as (complete) GPT over E'.

Diagonals of GF1 are clearly ultimately periodic. Let LPER(E', k) denote the
smallest period of the kth left diagonal of the GPT(E'). Cleariy LPER(E', k) <|A[~
The algebra E’ is said to be the algebra with maximal left periods if LPER(F’, k) = |A|*
for any ke N.

Theorem 6.3 (Kochol [56}). (i) E'=(A, K, [r, *) is the algebra with maximal left
periods, if and only if every word u € A* is the prefix of at least one (of infinitely many)
rows of GPT(E').

(it} There is an algebra of the signature (0, 1, 1, 2) of cardinality n with maximal
left periods, if and only if n is odd. There are exactly six different algebras of cardinality
3 with maximal left periods.

(iii) If€' =(A, K, |, r, *) is the algebra with maximal left periads, then the operation
1 is a cyclic permutation of A, the operation « is not associative, and for every a, bc A
there exists just one x € A such that a «+ x = b.

The next problem we shall deal with is the density of occurrences of particular
elements in GPT.

For an algebra E=(A, [, r, *), for wc A* and x € A, let us define the density of
the occurrence of x in the GPT(E, w) as follows:

DENS(E, w, x) = lim number of x in first n rows of GPT(A, w)
* 717 w=x number o all elements ir first n rows of GPT(A, w)

The next theorem says that from the point of view of density, there exists, surprisingly,
a “universal™ algebra at which one can achieve any feasible density of elemenrts by
choosing a proper initial word.

Theorem 6.4 (Korec [60]). For any s€ N there exists a finite algebra E=(A, k, r, *)
such that {1, 2,...,s}< A, and for every ordered s-tuple (a,, ..., a,) of nonnegative
rationals such that

a,tay+---ta, <1

there is a w & A* such that DENS(E, w, i) = a,.

Decision problems, the self-embedding problems, and row-language characieriz-
ation problems are related, and they are also nicely related to algebraic properties
of the underlying algebras as the following theorem shows [59, 60]. (The concept
of simple semilinear language (of degree k) that is used in the following theorem
is dcfined as follows. A language L< X* is called simple linear (of degree k) if it
has the form L= {u,v\u,v5... w0kt |uy, vy, ..., U, Uk, Uy, are fixed words in

72 J. Gruska

2 and i 20}, a language is called simple semilinear (of degree k) if it is a union
of finitely many simple linear languages (of degree k).)

Theorem 6.5 (Korec [58, 59]). (i) The problem whether a given element occurs at least
once (infinitely often) [and many other related problems] is undecidable even for GPT
over finite algebras with a commutative binary operation *.

(ii) All decision problems mentioned in (i) [and many other related problems] are
decidable for those GPT, row-languages of whick are simple semilinear.

(iii) If a GPT has the self-embedding property, then the corresponding row-language
is simple similinear and contexi-free.

(iv) If the binary operation of the algebra E is idempotent and associative, then all
GPT over E have the self-embedding property.

Some GPT can be designed from simple modules (actually finite and rectangular
two-dimensional words) using simple recurrences; for exainple GPT from Fig. 15
can also be obtained using reccurrences from Fig. 16. This has led to the investigation
of so-called modular two-dimensional words, in short modular trellises, as mappings
T:Nx N->T that can be designed in such a modular way. Formally, modular
trellises can be defined in a way that is a two-dimensional generalization of the way
a Thue-Morse infinite word is defined using iterated morphisms.

A trellis T over an alphabet I is said to be strictly (p, g)-mocaular if

T=lim u’(a)

jex

where 4 maps I into rectangular two-dimensional words

bll”'b.lp
p(d)=: - :
b,,---b

qt"""Uqp

such that a,, = a. A trellis T over the alphabet I' is said to be (p, g)-modular if T
can be obtained from a strictly (p, g)-modular trellis T’ over an alphabet I'' by
renaming (i.e. if T(i, j)=0(T'(i, j)) where 8:I""> I is a mapping). A trellis T is
said to be [strictly] modular if it is [strictly] (p, q)-modular for scme p, q. For
example the trellis depicted in Fig. 14 is (2, 2)-strictly modular.

Svstolic computations 73

Modular and strictly inodular trellises have bean investigated in [9] where two
quite different charactenzations of them have also been derived. The first one
characterizes (p, q)-moduiar trellises as exactly those trellises T for which T(i, j)
can be computed by a so-called (p, g)-sorting automaion. (It is a finite automaton
such that if it receives on its input (in parallel) integers i and j (in p-nary and
g-nary notation, respectively), then it comes to the state that uniquely determines
T(i, j)). Due to this characterization one can determine T(i, j) for a modular trellis
in time O(log(i +j)), while one seems to need, in general, time 8(i +j) to compute
T(i, j) for a GPT T. The second characterization characterizes modular trellises as
exactly those trellises that are fix-points of special substitutions on trellises. (A
substitution first partitions a trellis into rectangular words of the same size and then
replaces each such two-dimensional subwords by another two-dimensional finite
word, in general of a different size, but in all cases replacement is by subwords of
the same size.) It has been shown that the family of modular trellises is quite robust;
it is closed under various operations on trellises. Modularity of trellises of a special
type has also been studied. For example it has been shown [61] that a Pascal
triangle modulo p is modular (strictly modular), if and only if p is a prime power
(a prime).

RTTA is also a suitable model to study the power of nonhomogeneity in systolic
trellis computations. Three types of nonhomogeneous systolic RTTA have been
investigated in more detail [10, i3, 46, 61]. Regular RTTA are such nonhomogeneous
RTTA that their processor distribution forms a GPT. In an analogical way moaular
RTTA are defined as nonhomogeneous RTTA such that their processor distribution
forms a modular trellis. It has been shown that in the deterministic case both regular
and modular RTTA are more powerful than homogeneous ones. On the other hand
nondeterministic regular RTTA are as powerful as nondeterministic homogeneous
RTTA. (Whether the same holds true for modular RTTA is an open problem.)
Regular and also modular RTTA may have a large number of different types of
processors and quite complicated distribution of them. It is therefore interesting
that for each regular (modular) RTTA one can design an equivalent regular
(modular) RTTA that uses only processors of two types [10, 57]. This result also
indicates that the concepts of regular and modular RTTA are a reasonabic generaliz-
ation of the concept of homogeneous RTTA.

In [61] the thitd type of nonhomogeneous RTTA has been investigated, semilinear
RTTA. They are more powerful than homogeneous RTTA, and they seem to be less
powerful than regular and modular RTTA. A nonhomogeneous RTTA is said to be
semilinear of the degree k, if the set of the row words of the underlying trellis is
semilinear of degree k.

It has been shown [6i] that to every semilincai RTTA there is an equivalent
semilinear RTTA that is both regular and modular. Moreover every semilinear RTTA
is equivalent with a RTTA that is both regular and semilinear of degree 3 and with
a semilinear RTTA of degrze 2.

74 J. Gruska

We have considered here systolic tree and trellis automata as two verv basic
models of parallel computations. A natural question is what is the relation between
their power. It has been shown in [13] that families of languages accepted by systolic
tree automata over balanced trees and by homogeneous RTTA are incomparable.
On the other hand it has recently been shown [93] that each language accepted by
a systolic tree automaton over a balanced tzee can be accepted by a regular RTTA
and that simulation of systolic tree automata over a balanced tree on regular RTTA
can be done in quite a universal way.

References

[1] J. Albert and K. Culik 11, Simple universal cellular automaton and its one-way and totalistic version,
Complex Systems 1 (1987) 1-16.
(2] M. Bartha, An equational axiomatization of systolic systems, Theorer. Comput. Sci. 85 (1987) 265-289.
[3] M. Bartha, Interpretations of systolic flowchart schemes, TR, Bolyai Institute, Szeged, 1989.
[4] H. L. Bodlaender and J. van Lecuwen, Simulation of large networks on smaller networks, Dept.
of Computer Science, TR-RUL-CS-84-4, University of Utrecht, 1984.
{5] S. D. Brooks, Reasoning about synchronous systems, Dept. of Computer Science, TR-CMU-CS-84-
145, Camegie-Mellon University, 1984.
[6] J. H. Chang, M. J. Chung, O. H. Tbarra and K. K. Rao, Systolic trec implementations of data
structures, Dept. of Computer Science, TR-85-32, University of Minnesota, 1985.
[7] K. Culik 11 and C. Choffrut, On real-time cellular automata and trellis automata, Acta Cybernerica
21 (1984) 393-407.
[8] K. Culik I1 and 1. Fris, Topological transformation as a 2ol in the design of systolic systems,
Theoret. Comput. Sci. 37 (1985) 183-216.
{9] A. Cerny and J. Gruska, Modular treilises, in: G. Rozenberg and A. Salomaz (eds.), The Book of
L (Springer, Berlin, 1985) 45-61.
(10} A. Cerny and J. Gruska, Modular real time trellis automata, Fund. Inform. 1X (1986) 253-282.
[11] K. Culik 11,). Gruska and A. Salomaa, On a family of L languages resuiting from systolic tree
automata, Theoret. Comput. Sci. 23 (1983) 231-242.
[12) K. Culik IL). Gruska and A. Salomaa, Systolic automata for VLSI on balanced trees. Acta Inform.
18 (1983) 335-344.
[13] K. Culik 11, J. Gruska and A. Salomaa, Systolic trellis automata, Parts | and 11, Intern. J. Compui.
Math. 18 (1984) 195-212; 16 (1984) 3-22.
[14] K. Culik 11,). Gruska and A. Salomaa, Systolic trellis automata: stability, decidability and
complexity, Inform. and Control 71 (1986) 218-230.
{15] M. Chen, Very-high level programming in Crystal, Dept. of Computer Science, TR 506, Yale
University, 1986.
[16] J. H. Chang, O. H. Ibarra and M. A. Palis, Parallel parsing on a one-way array of finite state
machines, Dept. of Computer Science TR-85-20, University of Minnesota, 1986.
{17]). H. Chang, O. H. Ibarra and M. A. Palis, Efficient simulations of simple mode!s of parallel
computation by time-bounded ATM’s and space bounded TM’s, in: Proc. ICALP’88, Lecture Notes
in Computer Science 317 (Springer, Berlin, 1988) 119-132.
[18” J. H. Chang, O. H. Ibarra and A. Vergis, On the power of one-way communications, Dept. of
Computer Science, TR-86-11, University of Minnesota, 1986.
['9] K. Culik 11, O. H. Ibarra and S. Yu, Iterative tree arrays with logarithmic depth, Internat. J. Comput.
Math. 20 (1986) 187-204.
[20] K. Culik II, H. Jirgensen and K. Mak, Systolic tree architecture for some standard functions, Dept.
of Computer Science, TR-140, University of Western Ontario, 1985.
[21] K.Culik 1l and). Karhumiki, On totalistic systolic networks, Inform. Process. Lett. 26 (1988) 231-236.
22] K. Cu¥k 11 and H. Jiirgensen, Programmable finite automata, for VLSI, Internai. J. Comput. Math.
14 (1983) 259-215.

Systolic compurations 75

{23] P. Cappello and K. Steiglitz, Unifying VLS! design with geometric transformations, in: Proc. IEF¥
Interna:. Conf. on Parallel Processing (1938 448-451.

[24) K. Culik I and S. Yu, lterative tree automata, Theoret. Comput. Sci. 32 (1984) 227-247.

[25]) K. Culik II and S. Yu, Real-time, pseudo real-time and linear time ITA, Theorer. Compur. Sci. 47
(1986) 15-Z6.

[26] D. de Baer and J. Paredaens, A formal definition for systolic systeras, Dept. of Mathematics, TR,
University of Antwerp, 1984.

[27] E. Fachini, R. Francese, M. Napoli and D. Parente, BC-tree systolic automata: characterization
and property, Comput. Artificial Intelligence 8 (1989) 53-82.

[28] P. Frison, P. Gachet and P. Quinton, Designing systolic arrays with DIASTOL, RR-578, INRIA, 1986.

{29} A. L. Fischer and H. T. Kung. Synchronising large VLSI processor arrays, /FEE Trans. Compui.
34 (1983) 734-740.

[30] E. Fachini, A. Maggiolo Schettini, G. Resta and D. Sangiorigi, Nonacceptability criteria and closure
properties for the class of languages accepted by binary systolic trez automata, Dept. Informatica
ed Applicazioni, TR-54-88, University of Salerno, 1988.

[31] E. Fachini, A. Maggiolo Schettini, G Resta and D. Sangiorgi, Some structural properties of systolic
tree automata, Dept. Informatica ed Applicazioni, TR-55-88, University of Salerno, 1988.

[32] M. A. Frumkin, Systolic programming (in Russian), Voprosy Kibernet. (1988) 101-120.

[33] E. Fachini and M. Napoli, C-tree systolic automata, Theorer. Comput. Sci. 86 (1988) 155-186.

[34] A. L. Fischer, Memory and modularity in systolic array implcincntation, in: Proc. 1985 Conf. on
Parallel Processing (1985) 99-101.

[35] A. Fiat and A. Shamir, Polymorphic arrays: a novel VLSI layout for systolic computers, in: Proc.
STOC (1984) 37-45.

[36] N. Faroughi and M. A. Shanblatt, Systematic generation and enumeration of systolic arrays from
the algorithms, in: Proc. Internat. Conf. on Parallel Processing, University Parc (1987) 844-847.

[37] J. Gruska, Systolic automata: power, characterization, nonhomogencity, in: Proc. MFCS 84, Lecture
Notes in Computer Science 176 (Springer, Berlin, 1984) 32-49.

{38] M. Hennessy, Proving systolic systems correct, in: Proc. TOPLAS (1986) 344-387.

[39] S- W. Homick, A unified approach to the analysis and synthesis of systolic arrays, Dept. of Electrical
Engincering, TR-1039, University of lllinois, 1985.

[40] 1. Hromkovi¢ and D. Pardubski, Some complexity aspects of VLSI computations. On the power
of input bit permutations in tree and trellis automata, Comput. Artificial Intelligence 7 (1988) 397-412.

[41] J. Hiomkovit and D. Pardubski, Some complexity aspects of VLSI computations, VLSI circuits
with programs, Comput. Artificial Intelligence T (1988) 481-496.

[42] C. H. Huang and C. Lengauer, An implemented method for incremental systolic design, in: Proc.
PARLE, Lecture Notes in Computer Science 259 (Springer, Berlin, 1987) 160-177.

[43] O. H. Ibarra, Systolic arrays: characterization and complexity, in: Proc. MFCS, Lecture Notes in
Computer Science 233 (Springer, Berlin, 1986) 140-153.

{44] O. H. Ibarra and T. Jiang, On some open problems concerning celfular arrays, Dept. of Computer
Science, TR, University of Minnesota, 1987.

[45] O. H. Ibarra and T. Jiang, On one-way cellular arrays, SIAM J. Comput. 16 (1987) 1135-1.53.

[46] O. H. Ibarra and S. M. Kim, Characterizations and computational complexity of systolic trellis
automata, Theoret. Comput. Sci. 29 (1984) 123-153.

[47] O. H. Ibarra and S. M. Kim, A characterization of systolic binary tree automata and applications,
Acta Inform. 21 (1984) 193-207.

(48] O. H. Ibarra and M. A. Palis, Two-dimensional systolic arrays: characterizations and applications,
Theorei. Comput. Sci. 57 (1988) 47-86.

[49] O. H. Ibarra, M. A. Palis and S. M. Kim, Designing systolic algorithms using sequential machines,
in: Proc. STOC (1984) 46-5%.

[50] H. O. Ibarra, M. A. Palis and S. M. Kim, Some results concerning linear iterative (systolic) arrays,
J. Parallel Distributive Comput. 2 (1985) 182-218.

[51] H. Jirgensen and A. Salomaa, Syntactic monoids in the construction of systolic tree automata.
Internat. J. Comput. Inform. Sci. 14 (1985) 35-49.

(52] H. T. Kung and M. S. Lam, Fault-tolerance and two-level pipelining in VLSI systolic arrays, in:
Proc. Conf. Advanced Research in VLSI, MIT (1984).

{53] H. T. Kung and M. S. Lam, Wafer-scaie integration and two level pipelined implementations of
systolic arrays, J. Parallel Distributed Process. 1 (1984).

76 J. Gruska

(54] H. T Kung and C. E. Leiserson, Systolic arrays (for VLSI), in: Sparse Matrix P; aceedings (Soc.
for indus:rial and Applied Mathematics, 1978) 256-282.

[$8] C. J. Kno, B. C. Levy and B. R. Musicus, The specification and verification of systolic wave
algorithms, TR, Dept. of Electrical Engineering and Computer Sciences, MIT, Cambridge, 1984.

[56] M. Kochol, Generalized Pascal triangles with maximal left periods, Comput. Artificial Intelligence
6 (1987) 54-76.

[57] 1. Korec, Two kinds of processors are sufficient and large cperating alphabets are necesszry for
regular trellis automata languages, Bull. EATCS 23 (1284} 35-42.

[58] 1. Korec, Generalized Pascal triangles, decidability results, Acta Math. Univ. Comenian. 46-47
(1985) 93-130.

159] 1. Korec, Generalized Pascal triangles (in Slovak). Doktoral Thesis, Comenius University.

[60] 1. Korec, Asymptotical densitics in genealized Pascal triangles, Comput. Artificial Intelligence §
(1986) 187-198.

[61] 1. Korec, Semilinear real-time trellis automata, in: Proc. FCT 89, Lecture Notes in Computer Science
(Sp: *=ger, Betlin, 1987).

[62] S. Y. Kung, On supercomputing with systolic/ wavefront arary processors, Proc. IEEE 72 (1984)
867-884.

[63] H.T. Kung, Systolic algorithms for the CMU warp piocessor, Dept. of Computer Science, TR-CMU-
CS-84-158, 1984.

[64] H.T. Kung, Memory requirements for balanced computer architectures, Dept. of Computer Science,
TR, Camegic-Mellon University, 1985.

[65] H. T. Kung, Warp Demo, Dept. of Computer Science, Carnegie-Mellon University, 1986.

[66] H. T. Kung, Special-purpose supercomputers, in: Information Processing IFIP" 86, Participants
Edition (1986) 565-570.

{67] L. Kossen, and W. P. Weijland, Comrectness proofs of systolic algorithms: palindroms and sorting,
Dept. of Computer Science, TR-FVI-87-04, University of Amsterdam, 1987.

[68] F.T. Leighton and C. E. Leiserson, Water scale integration of systolic array<, JEEE Trans. Comput.
34 (1985) 448-461.

[69] M. Lam and J. Mostow, A transformational model of VLSI systolic d-sign, in: Proc. 6th Internat.
Symp. on Computer Hardware Description Languages and their Applications, IFIP (1983) 65-67.

[70] C. E. Leiserson and J. B. Saxe, Optimizing synchronous systems, n: Proc. FOCUS (1981) 23-36.

{71] C. E. Leiserson, F. M. Rose and). B. Saxe, Optimising synchronous circuitry by retiming, in: Proc.
Caltech Conf. on Very Large Scale Integration (1983) 87-116.

[72] G.-J. Liand B. W. Wah, The design of optimal systolic arrays, IEEE Trans. Comput. 34 (1985) 66-77.

(73] B. Lissper, Descripiion and synthesis of systolic arrays, Dept. of Numerical Analysis and Computing
Science, The Royal Institute of Technology, Stockholm, 1986.

{74] D. 1. Moldovan, On the design of algorithms for VLSI systems, Proc. IEEE 71 (1983).

[75] W. L. Miranker and A. Winkler, Space-time representations of computational structures, Computing
32 (1984) 93-114.

[76]) D. Pardubskd, Closure properties of the family of languages defined by systolic tree automata,
Comput. Anificial Intelligence 7 (1988) 59-64.

[77] P. Quinton, The systematic design of systolic arrays, TR-193, IRISA, 1983.

(78] M. Rem, Trace theory and systolic computations, Dept. of Mathematics and Computer Science,
TR, Lindhoven University of Technology, 1988.

{79] S. Rajopadhye, S. Purushothaman and R. Fujimoto, On synthesising systolic arrays from recurrent
equations with linear dependencies, in: Proc. Foundations of Software Technology and Theoretical
Computer Science, Lecture Notes in Computer Science 241 (Springer, Berlin, 1986) 488-503.

(80] S.G. Sedukhin, Systematic approach to the design of VLSI a=tworks (in Russian), Preprint, Academy
of Sciences, Novosibirsk, 1985.

[81] S. G. Sedukhin, Design and analysis of systolic algorithms for algebraic path problem, TR,
Computing Center, Academy of Sciences, Novosibirsk, 1987.

(82) S. G. Sedukhin, Design and analysis of systolic algorithms for the algebraic path problems, TR,
Computing Centc., Academy of Sciences, Novosibirsk, 1988.

[83] S.G. Sedukhin and E. V. Trishina, From the set of recurrent equations to the set of systolic wavefront
algorithms, TR, Computing Center, Academy of Sciences, Novosibirsk, 1989.

Sistalic comjaatations 77

[84] T. Toffoli, Cellular automata as an alternative to (rather than an approximation of) differential
equations in modelling physics, in: Cellular Automata, Proc. Inierdisciplinary Workshop, Los Alamos
(North-Holland, Amsterdam, 1983) 117-127.

[85] P. J. Varman and 1. V. Ramakrishnan, A fault-tolerant VLSI matrix multiplier, Dept. of Computer
Science, TR-85-29, SUNY at Sicny Brook, 1985.

[86] R. Vollmar, Some remarks on pipelined processing by cellular automata, Comput. Artificial Iniel-
ligence 6 (1987) 263-278.

{87] R. Vol'mar, Basic research for cellular processing, in: Proc. PARCELLA (Akademie-Verlag, Berlin,
1988) 205-222.

[68]) U. Weisser and A. Davis, A wavefront notation tool for VLSI array design, in: VLS! Svstems and
Computations (Computer Science Press, 1981) 226-234.

[89] W. P. Weijland, A systolic algorithm for matrix-vector multiplication, in: Proc. Computing Scicnce
in The Netherlands (1987) 143-160.

[90] S. Wolfram, Statistical mechanics of cellular automata, Rer. Modern Phys. 88 (1983) 601-644.

191] S. Wolfram, Computation theory of ccliular automata, Comm. Math. Phys. 96 (1984) 15-57.

[92] S. Wolfram, Universality, and complexity in cellular automata, Physica 10D (1984) 1-35.

[93) E. Fachini, J. Gruska, A. Maggiolo Schettini and D. Sangiorgi, Simulation of systolic tree automata
on trellis automata. TR, Diparntimento di Informatica, Universita di Pisa.

[94] K. Culik II, A. Salomaa and D. Woad. Systolic tree acceptors, RAIRO Inform. Théor. 18 (1984)
53-69.

