
Theoretrcal Computer Science 71 (1990) 4’-77

North !iolktnd
47

SYNTHESIS, STRUCilJRE AND POWER OF SYSTOLIC
COMPUTATIONS

Jozef GRUSKA

lnsriruw qf Technical Cj6emerics. Slovak Academy of Sciences. Utihrarskd 9. 8-f_’ .Z 7 Rraritlac~a,

Czechoslorwkia

Abstmet. A varier) ofprohlcm rcldted to systolic architectures. systems, models and computations

are discussed. The emphases are on theoretical problems of a broader interest. Main motivations

and interesting/important applications are also presented. The first pan is devoted to problem&

related to synthesis, transformzttionc and simulatrons ol‘systoiic systems and archttectures. In the

second part, the power and structure or tree and linear array computations are studied in detail.

The goal is to suwey main research directions. problems. methods and techniques in not too

h-mal 3 way.

1. Imtrodoetioe

Systolic architecture has been one of the most attractive ideas in computer

architecture so far. It is very appeaiing from the design point of view, because it is

based on repetiiions of simple processors, and on regularity, modularity and sim-

plicity of interconnections. Moreover, many systolic systems can be designed using

only very few types of processors, and also the repeated use of each input data in

systolic systems significantly minimizes interaction with the memory of the host

computing environment. All these are also reasons why systolic architecture is so

suitable to make full use of the great potential of VLSI technology. Due to its

simplicity, modularity and repeatability, systolic architecture also offers transparent,

understandable and manageable, but still quite powerful, parallelism. Intricacy of

data and communication flow in many systolic systems, offer the magic so useful

and necessary to attract larger groups of designers to the idea. At the same time. a

large variety of interesting theoretical problems of fundamental importance, and

broader implications, have arisen in connection with the synthesis, analysis, and

implementation of systolic and related systems and computations.

Systolic systems can be seen as an interesting and useful modification (sim-

plification mostly), of the cellular automata concept of von Neumann, with more

emphasis on regularity and transparency of data and computation flow. New models

and new problems have been motivated mainly by advances in technology. Similarity

with cellular automata has immediately brought into use a whole bunch of theoretical

techniques to study systolic architectures, systems and computations. Gn the other

hand, systolic architecture is a natura! modificarion (generalization mostly) of

0304-3975/90/93.50 @ 1990, Elsevier Science Publishers B. V. (North-Holland)

48 1. Gmska

pipelining-the architecturai concept that has contrihw-vl ST i.jLLh in recent vears
to the significant increase in performance of modem computers. The creation of a
quite general model of a practically important concept has been once again an

important tool leading to a new quaiity- this time in computer architecture and
supercomputing. This has, in turn, brought a new set of powerful formal methods

into computer architecture.
Two of the most powerful recent concepts in computer architecture, systolic

systems by H. T. Kung and RISC architecture by J. Cocke, have quite similar genesis.
Both autLors arrived at their ideas which are of major importance for computer
architecture, by doing mainly theoretical research in quite remote areas of computer
science and having in common mainly a long term search for improving efficiency.

The first and nowadays seminal systolic systems by Kung and Leiserson-for
matrix multiplication kird LR-decomposition-appeared in 1978. Since then various
systolic systems have been designed. Several systolic system implementation patents
have been taken in various countries.

Most of the systolic systems have been designed using ad hoc methods and in
many cases very similar systolic systems have been designed for seemingly quite
different problems. This has naturally led to intensive research oriented to develop
ping systematic and sufficiently automatizable methods to synthesise systolic systems
from high level specifications. Significant progress has been achieved in this direction
and several systolic system design methodologies are also discussec! in this paper.
The method due to Ibarra and his coworkers [49, 481 deserves special attention.
lnspite of being theory oriented and inspired, this method is very powerful and
allows the design of systolic systems of various architectures to be reduced to the
design of sequential programs for various simple sequential machines-a long time
desire in the area of parallel computations. rn addition, various theoretically justified,
systo!ic system transformation techniques and systolic architecture simulation tech-
niques have been developed. They also contribute significantly to the improvement
and efficiency of systolic system design methodologies [7 1, 8).

The path from systolic systems, represented by attractive but still very high level
abstract networks, to real and efficient implementations is long, indirect, and far
from easy. In order to obtain really useful VLSI implementations, various tradeoffs
and design modifications have to be considered [34, 29, 68, 851, and really very
high density integrated circuits are required. All this can be seen ,>n perhaps the
main project in this area, the warp machine at CMU. This machine consists of a
linear array of programmable processors that have been designed in such a way
that the whole array can implement efficiently various systolic systems especially
for vision and signal processing computations. This project indicates especially well
how long and complicated is the way from a simple though powerful idea to a really
successful machine. Ilnpltmentation problems have also led to some interesting
theoretical problems.

VLSI implementations are not the only way to make use of the advantages of
systolic systems. For several reasons they are also very suitable for effective simula-

tions on current multiprocessor systems, for example multitransputer systems. This

has led to attempts to develop systolic programming methodologies, programming
languages and environments [32].

There have also been numerous attempts to develop and study various abstract

models of systolic systems and computations and this will be our main interest in
this paper. The models are of various degrees of abstraction and often far more
genera! than a naive view of systolic systems, deduced from main examples, would
suggest. The range of problems to be investigated for a particular model is partly
determined by the generality and the abstraction of the mode!, but mainly by our

desire to improve our insight and knowledge concerning synthesis, behavior and
analysis of systolic architectures, systems and computations and to improve our
methodology for dealing with them.

The concept of topological transformation, as a formalization of time-space
transformations, is a very useful too! to study various problems in the area of systolic
computations, especially in the area of simulations of systolic architectures and
transformations of systolic systems. Various results useful for the design and syn-
thesis of systolic systems have also been obtained using this too!. Of special
importance are results concerning the removal of broadcasting and the -placement

of two-way communications by one-way, with minima! time overhead. Two special
rransformations, retiming and slowdown, are nowadays powerful tools for design
of netwcrks. Simulation results presented here concentrate on simu!a%n of one
paraiiei architecture on another one, on emuia:ion of large networks on smaller
ones and on a “universal” one.

Parallel automata of several types-mainly array, trellis and tree-like networks
of finite automata (often memory!ess)-have been the main theoretical models used
to study various basic problems concerning systolic architectures, systems and
computations: the power of various interconnections, the power of one-way and
two-way communications, the power of difierent communication modes with the
environment iinput/output) and the power of various types of nonhomogeneity.
Some of these networks-two-dimensional arrays, trellises and trees-and some
types of inputs are shown in Fig. 1.

a) w-q_... $”

: * i . : Cl

. . .

an. .a1
Et3

. . .

. . .

al a2 a3 a”
,lbwww

1 2 3 ab aS a6 a7 a8

Fig. I.

50 1. Grusra

Time-space transformations of kear array computations led to the study of other

and even more abstract models of systolic computations- two-dimensional infinite

words of special types-that are also of a more general interest. Main attention has
been devoted so far to the study of infinite tw-o-dimensional woras that form so
called generalized Pascal triangles over arbitrary algebras of the signature (1, 1,2).
They have a rich structure that has allowed various interesting results to be derived
concerning linear array computations and their relations with the properties of the
underlying algebras.

Cellular automata in general and linear arrays in particular have also been
considered as models suitable to study behaviour of complex systems and also as
new models of the physical world [84, 90, 921. Models and results motivated
originally by our desire to master parallel computations may also be very useful to
obtain deeper results in these new and fundamental investigations.

There are several other surveys on theoretical issues related to systolic computa-
tions [37, 43, 871.

2. Systolic syste!ms

There have been several attempts to find a formal definition of systolic systems,
for example in [26]. The most fruitful so far is the one given in [70], though at first
sight it does not look that way because it is very general. A slight modification of
this definition and related theoretical developments and applications are discussed
in this section.

Definition 2.1. A semisysrolic sysrem S = (V, E, 6, 0, zr) is an oriented multigraph,
with the set of nodes V, the set of edges E, the data domain 0, the processor
mapping n that associates with each node UE V of the indegree p>O, a function
a(u) : LY’ + 0, and the delay mapping S : E + N (the set of nonnegative integers)
such that if S is extended in a natural way to map also paths of S into N, then
S(p) > 0 for any cycle p. (6(e) represents the number of the delay-one registers on
the edge e. and the requirement a(p)>0 excludes the existence of networks with
“unlimited rippling”.) The nodes of V of the indegree (outdegree) 0 are a:a!!ed the
input (output) nodes or processors of S. If a(e)>0 for any ec E, then S is called
a sysrolic system.

An informal description of the behaviour of a semisystolic system S is similar to
that of a synchronous network working in discrete time. At each moment of the
discrete time, each node and also each register output either a value from D or a
don’t care element, say (‘#‘). In the case of the register it is the same value as it
was at the previous time step on the output of its predecessor (i.e. of the preceding
register on the same edge, if there is one, or of the outgoing node of that edge). In
the case of the input node it is a value submitted from the environment. Finally, in
the case of a node u of the indegree p > 0, the corresponding processor outputs the

value of the fun&on a(u) applied to the arguments produced by its predecessors
(registers or nodes) on all ingoing edges at the previous time steps. Moreover, it is
assumed that all registers have an “initial value” to start a computation.

It has turned out that in order to be able to deal more precisely with semisystolic
systems, especially to formulate precisely the impacts of various transformations,
and to develop synthesis techniques, a more rigorous treatment of their semantics
is r eeded.

One way of defining semantics of a semisystolic system S is to associate a “time
function” with each node cf S [S]. By that we mean an arbitrary partial function
from % (the set of all integers) to 0, that is defined only for finitely many negative
integers. (The intended interpretation is that the value of the time function associated
with a node u, and an argument f, is exactly the value produced by processor in D
at the time 1.) This can be done as follows.

Let V, be the set of input nodes UC S. Let UC fivt assign a time function 7,. to
each input node UE V,. The semantics of S, with respect to the given input time
functions, is then a mapping @ of nodes of V into time functions, such that @p(u) = rr
for any u E V,, and for all other nodes u, a(u) is the minimal fix-point solution of
the semantic equations of S. These semantic equations, one for each non-input node

of S, relate, in a natural way, through functions associated with node-processors,
the time function of each node with time functions of its predecessors on all ingokg
edges.

Two types of transformations on semisystolic systems are of special importance:
slowdown rmnsfonnations and retiming trans$mnarions.

If k E rJ* = N - {0}, then the k-slowdown transformation of a semisystolic system
S = (V, E, 6, D, a) results in the semisystolic system S”’ = (V, E, 6“‘. D, n), where
S”-‘(e) = ks(e), for any e E E. A retiming transformation of S is given by any mapping
r:V-,2suchthatforanyedgee:u+u,R(e!rr(~!- t{ 3 1 b (?. Tbt resulting semi-

systolic system is S, = (V, E, 6,. 0, a), where s,(e) = 6(e) + r(u) - r(u) for any
edge e:u+v.

In order to define the effect of the slowdown and the retiming transformations
we need to Introduce two sets of operators on time functions, parametrized by
posit?:z integers k:

(1) delay operarots eL such that (eAJ’f)(1) = F(r -k) for any I;
(2) spread operators R” such that (l2”f)(kr)=f(r) for any t, and undefined

otherwise.

Theorem 2.2. Let S = (V, E, 6, D, a) be a semisysrolic system. L-et @, = {/;. 1 u E V,}
be a set of time functions associated with input nodes of S. Let 0 = {1;, 1 u E V} be the
leasr #x-point semanrics of S with respect to @, .

(1) If k>O, then a”‘= {f2”fU 1 u E V} is the least m-point semantics qf the

k-slowdown semisystolic system S’ ’ ’ with respect to the input rime functions LJ”f,, for

DE v,.

52 1. G:_..A

(?b If r is a retimirrg tr~wformation of S, then @, = {Or’c’~. 1 v E V} is thr least

fix-@u semantics of the retimed semisystolic system S,, with respect to the input time

functisrw t3r’w’f0 for v E V, .

It is often easier to design. a semisystolic system for solving a problem than 2
systolic one. The main reason for that is that in semisystolic systems one can use
broadcasting to transmit data without any delay, wherever they are needed. Because
cf that, sezisystolic systems are often more transparent. On the other hand, the
eristence of delay-free interconnections requires an incrrasc in the length of the
c!och cycle. Z! is therefore very desirable to be able tti transform semisystolic systems
into systolic ones with the same interconnection structure. Necessary and sufficient
conditions for the existta’;ce of retiming transformations capable of doing that are
well known [7i j. T!:e ii~~~~ng of broadcasting is the main use of retiming transfor-

mations. For some ;zli:isyr;olic systems S there is no retiming transform>ition to
obtain a systolic system from S, but if iiM a proper slowdown tranjfo!maitti.: is.
applied to S, then the resuitiug semisystolic system can be retimed to obtain a
systolic one. This is the main use of slowdown transformations. in this way quite
a few well known and tricky systolic systems can be easily obtained from very
naiurai networks.

Exam+ 2.3. Let A = {a@} be an n x n matrix such that its LU-decomposition into
a lower triangular matrix L = (1,) with Is in the main diagonal, and into an upper
diagonal matrix U = { uii} can be computed by Gaussian elimination without pivoting.
The elements of matrices L and U can be computed according to the following
recurrences:

a; = a@, ai = a:-’ - IikuQ

It is now easy to see that LU-decomposition of A, for the case I) = 4, can be computed
by the semisystolic system and the flow of data as shown in Fig. 2 [62]. Computations

(a)

0

a13
0 0 %l a22 a23

0 a31 a32 a33

a4l a42 a43

a14

a24

au

a44 (b)

Fig. 2.

performed by four types of processors are shown in Fig. 2(b). tach diagonal has
one register, verticai and horizontal edges have none.

There is no way to retime this semisystolic system to obtain a systolic one. On
the other hand if at first the 3-slowdown transformation is applied, then it is easy
to retime the resulting system in such a way that each edge has exactly oqe register_
After some cosmetic changes one then quite easily obtains the well known systolic
system of Kung and Leiserson [54] with quite tricky flow of computation.

Retiming transformations can also be used to optimize synchronous networks
with respect tC vzric :s cost criterra. For example, to minimize the cio& cycle fc,*
the case when time needed to ~~:rf~rm processing in each node is given, or to
minimize the total numbe; of rc;4isum. These optim&tion problems lead to ;Tarious
linear progrdrr,miqe probloTs !.x jrhich eEcient algorithms are known [71]. Retim-
ing transformations cc ,a ;rI~:_t hc: uscj to deal with various problems concerning two
level pipelining and fault-rl,;rran:e i ‘2, 531.

Based 0.1 the model 0: semisystolic systems discussed in this section 1701, the
concept of a systo!ic flowchart s&,:me has been introduced in [2] to study syntactical
properties of systolic systems. Equational axiomatization of such systolic flowchart
schemes has been presented in [2]. Systolic flowchart schemes and their interpreta-
tions have been considered to be an algebraic framework useful for the study of
systolic systems [3].

In [39], quite a different type of transformations of systolic networks is considered.
They preserve timing of systolic computation flows but they may change topology
of the underlying network. These transformattons can also be used as a quite
powerful systolic system design methodology.

3. Systolic system desigm mctbdologies

Transformations presented in the previous section represent powerful systolic
system design tools. On a different level of abstraction, several, though quite
restricted, design methodologies can be abstracted from the proofs of theorems
dealing with the power of various classes of systolic automata (see Sections 5 and
6). These results allow, for example, the automatic design of a systoiic treliis
automaton to recognize any language being an intersection of a finite set of linear
languages, directly from linear grammars that generate these languages.

Starting with [88] a variety of more or less formal techniques for systematic design
of systolic systems has appeared [S, 15,23,28,42,69,72-75,77,80]. Three of them
are discussed now in more detail.

Ibarra and his co-workers have developed several characterizations of networks
(of various architectures) of finite automata in terms of variants of sequential Turing
machines. These characterizations are a base for a powerful design methodology.

One characterization is in terms of so-called full scan Turing machines (STM).
There are actually several such machines, each for a different class of finite automata

54 J. Glush

networks. They differ in !ile initial configurations, in positions where they read txw
input symbols, and how they react ta endmarkers [49, 371. We shall consider here
only two of them, STMd and STM’. A STM M is a one-tape, one-head Turing
machine with the external input (Fig. 3) to receive input words a, . . . Q,$, where
a, E 2, and % is not in the input alphabet 22 M begins a computation in the initial
state qo, and keeps performing right-to-left and left-to-right sweeps. An input is
accepted if M writes an accepting sgmbol :fr;m a fOc f, the tape alphabet). Figure
3b shows the initial configurations for STMd and STM’ and complete sweeps. “R”

shows where the reading of the external input takes place. “w” above a square
emphasizes that some writing into that square occurs and **w(S)” above a square
indicates that “s” is written into that square as soon as it is read from the extem;ll
input. During their left-to-right sweeps STM always stay in a special state of,, do
not change tape contents and keep moving right until they meet $ or the blank
symbol A. During right-to-left sweeps STM may change tape contents and states
but they enter the state q,, if and only if they come to the square cith S or A, then
always a left-to-right sweep starts. The swpep complexily of M on an input is the least
number of complete sweeps needed to accept the input.

The following theorem [49, 501 relates STMd and STM’ with systolic trellis
automata with diagonal and vertical acceptance [37] (Fig. 4). These automata have

(a)

Fig. 4.

the form of an infinite network of identical memoryless processors, with the lransi?ion

function g such that g(A. A) = A. They actually represent time-space transformation

of linear array computations, and therefore ihe following theorem can easily be

reformulated in such terms.

Theorem 3.1. (I) A language L is accepted by a systolic trellis automaton with oertical

acceptance in time 2 T(n) - I, if and only [f it in accepted by a STM’ n-it/r the sweep

complexity T(n).

(2) A language L is accepted by a systolic trellis automaton with diagonal acceptance

in time T(n), if and on!r if i is accepted by a STMd witl; the weep comple.uit,v T(n).

While the previous theorem characterizes systolic automata (or linear arrays) as

acceptors, the following one characterizes one-way two-dimensional cellular

automata (OZMA) as transducers (Fig. 5) in terms of so-called two-dimensional

sequential machines (ZDSM) (Fig. 6) [43,48].

A 2DSM A4 with the input of n symbols operates on a two-dimensional tape of

I: x n squares. Initially all squares contain the symbol A. Similarly as for STM,

2DSM also operate in sweeps. A sweep begins with M in a distinguished state 9,,

and with the head on the leftmost square of the :opmost row. M then reads an

input symbol and moves through squares of the first row, from left to #eight, rewriting

symbols and changing states (except into 9,J as a Turing machine &es. After the

rightmost square is visited, the head is reset to the first square of the next row in

Fig. 6.

56 J. Gnlska

the state qo. This action is repeated fol ali POWS. At each step, new symbo! and new
state depend on the previous state, on the old symbol in the S~*IS*D being scanned

and, if there is any, alsr 3 ?h- s*Jriibol Etored in the square just above the scanned
square. Afte: scantLug tii~ ias: sq:;?re of the last row an output symbol is produced,
and M is reset to the first square of the first row to star; the next sweep. M is said
to have sweep complexiry S(n) on an input ul . . . a,$ if it outputs S after at most
S(n) sweeps.

Theorem 3.2 (Ibarra [43]). Ler S(n) 2 n + 1. A 2DSM with sweep complexity S(n)

can be simulated by a OZDCA in time S(n)+2n -2, and conotrsely.

There are many other characterizations of array computations in terms of sequen-
tial machines_ They have b?en used to derive new and efficient systolic systems for
those tasks for which no such systolic systems are yet known. (No other design
methodology has been so successful.) For example, the last theorem has been used
to show that recognition and parsing of context-free ianguages can be done on
02DCA in linear time [16]. These characterizations have a!so been used to obtain
new theoretical results. For example a generalization of Theorem 3.2 to higher
dimension has been used to show [43] that (k+l)-head nondeterministic finite
automata can be simulated by a OZDCA in time (k + l)n + k - 1.

The second important class of systolic system design methodologies consists of
various data dependence graph manipulating strategies. The main idea is to analyse
a data dependence graph and then to transform it into the equivalent one that
satisfies certain constraints that are natural abstractions of systolic and VLSI require-
ments. Methodologies of this type [36,77,79,80,83] have been especially successful
for the design of systolic systems for matrix coriputations because in such cases
one can naturally associate operations of computations with integer points of three-
or four-dimensional space (see Fig. 7 for the data dependence graph for multiplica-
tion of matrices of degree 2, i.e. C, = Es= Iaabkj)-

In order to obtain more easy manipulable data dependence graphs, with only
local interconnections, a slight modification of basic algorithms is usually useful-
this results mainly in the introduction of some forms of pipelining of input data.

k

m-s

/I ,I
- i

:: i
. ‘: 2-m : L i . $1 : : -_

-8

___-_ b

. C

i

3

Fig. 7.

For matrix multiplication it has, for example, the form:

c(i,j,k)=c(i,j,k-l)+a(i,i C:- i;c~,r--l.j,k),

:I (; k)=a(i,j-l,k),

b(i,j,k)=b(i-I,j,k).

Various geometric transformations, e.g. affine transformations of data dependence

graphs [23], followed by their projection into a plane or a line, result in a variety

of two- or one-dimensionc: systems.

The main problem is how to find, in a sufficiently systematic way, suitable

transformations and projections. There have been attempts to solve this problem

for computation tasks specitied by home restricted specification languages. Perhaps

the best known is the method developed by Quinton [77]. It can be applied to the

design of systolic systems for computations that can be expressed as a set of uniform

reccurent equations

U,(z)=f(U,(z-8,) ,..., U,(z-6,))

(I)

over a convex set D of integer coordinates of the n-dimensional space. .f is a p-nary

function, and 8,. . . . , :$ are “dependence vectors” from Z”.

Quinton’s method consists of two steps:

(i) to find a riming function I : D + IV, i.e. a schedule of computation that is

compatible with dependences resulting from the equations (I 1;

(ii) to find an o/location funcrion u : Z” +Z’ that maps D into a finite set of

integer points, that represent positions of processors of a Fystolic system, in such a

way that concurrent computations are mapped into different processors and resulting

interconnections of processors, as well as data flows, are sufficiently reg&r.

in i773 necessary and sufficient conditions are given for a quasi-@ine riming

jimclion

f(z)=Irr’z-a[, DE Q”, a E Q (set of rationals) (2)

to satisfy all above mentioned requirements. These conditions allow 12 and a to be

chosen.

Once t is fixed. the task is to find an allocation function o such that a(D) is

finite, and a(x) = a(r) + r(x) f f(y) if x, y are in D. In [77] it is shown how to find

a quasilinear allocation function. This function actually represents a projection of

D along a properly chosen vector-a ray for U.

There have been many modifications and generalizations of this approach [36.

79, 80, 831. Interactive software systems for the design of systolic system have also

J. Gruska

1 :on ‘%ril’ (;,I rF,s base (system DIASTOL in [28] and system S4 in 1831.) Of special
interest IS the approach developed by Sedukhin [SO-831. His goal has been to develop
z methodology for finding all (in a reasonable sense) systolic systems for a given
computational problem specified in some more general specification language_ It is
the language of recurrence equations with linear dependences

where again p and 8,, . . . , 0, are vectors from Z” and

p-8,=Ajp+bj forj=l,...,k,

where Aj are constant n x n matrices and bj are vectors from Z”. In the case that
the rank of the matrix is n - I, which is the case for practically all known examples,
then there is a method [80] to transform (3) into the pipelined form (1) with constant
dependence vectors.

The vector n and the constant (I from the timing function in (2) can also be
obtained by solving an appropriate number of equations

t<Zj)=lW’Zj-al

where t(zj), for points Zj, can be determined from the dependence graph by the
maximal distance of the point Zj from the node representing the start of the
computation process. After the timing function is specified, the next step is to project
the data dependency graph along all directions that are not parallel to the hyperplane
defined by the timing function and thereby all possible systolic architectures are
obtained. For that it is of course important that projections preserve the nearest
ncighbour property and for that it is suticient to consider as projection vectors H
only vectors with coordinates -1, 0, I. After excluding the null and symmetric
directions of projection vectors, then the number of projections, and therefore of
potentially different systolic systems, is (3” -I)/2 which gives 13 for the most
common case n = 3 and 4 for n = 2. The projections of nodes of the data dependence
graph have to be conflict-free, with respect to the timing function, but this is achieved
iC Vms3=)r =% nti p+M \o \ht %iinB hi~n~, i.e. i5 \\e 6ia-i protrutn \ ?I,
I() is not zero. In [80-833, all systolic systems for matrix multiplication (13),
LU-decomposition (13), the algebraic path problem (9), and discrete Fourier trans-
formation (4) are derived, including some not previously known. Software system
S’ (System of Systolic Structure Synthesis) (see [83]) generates the set of possible
transformations at each step of the systolic system synthesis processes and also
provides tools for selecting “the best” systolic system.

Systolic system verification techniques are also an important part of systolic system
design methodologies. One very natural idea [55] is to make use of the regularity
of network interconnections and the regularity of data and computation flow. In
many cases both the position of processors and the positions of data in data streams
can, at any time moment, be naturally represented by integer points in the two-
dimensional plane. This allows expression of the relation between the data and their

Sywdic compuIarion3 59

\
\ \ \ .

/
/

2
”

\
\ 5

/-- /
/ f

”

I
-m-s _ _ ___

a
”

x
”

B

J
*.

\
\ z 0 \

h-m - _ -_

60 1. Gruska

positicns at different time-moments by so-called space-timp-dare equorions and these
equations can then be used to show that correct d 2~ arrive at the processors at the
_ orrect time and on this basis the correctness of the whole systolic system is shown.

Example. The well-known systolic system j54] for multiplication of matrices of an
arbitrary degree but with bandwidth 4 is shown in Fig. 8. If the proper coordinate
system is chosen (represented by the dotted lines in Fig. 8), then space-time-data
equations for the movement of elements a;j of the matrix A, which relate the indices
i, j and the coordinates (x, y) of position (Iii in time !, have the form

x-j-i=0
,

y-i-2j+2-1 =O.

Similar space-tim:-dstrt equlions can coil y be derived for the movement of the
elements of the matrices B and C. Using these equations one can show that whenever
a c, arrives at a processor, then it meets there the proper elements of matrices A
and B to make the computation that is needed.

More formal and semantics theory based development of systolic system design
and verification framework is given in [38,67,78]. In [67,89], it is shown how to
develop and prove correctness of some systolic systems in the framework of algebra

of communicafing processes. In [78] trace theory framework is used to discuss and
develop systolic systems in terms of their input/output behaviour.

4. Simoldoms

Simulation problems of three types are of great importance for the design of
parallel networks.

(1) How to simulate efficiently networks of one parallel archGcc:ure on networks
of another parallel architecture. It often happens that it is easier to design an
algorithm for implementation on a particular architecture (e.g. on two-directional
cellular rings), than on a slightly different architecture (on one-directional cellular
rings), networks of which are physically easier to implement. Therefore any technique
that shows how to simulate systematically and efficiently, networks of one parallel
architecture on another architecture, represents an important network design tool.

(2) How to simulate efficiently large networks on smaller networks of the same
parallel architecture. If one has to design a network for solving a particular problem,
then it is usually very convenient to choose a network of the size that just matches
the size of a given problem. This requires arbitrarily large networks to be considered.
On the other hand, the size of available multiprocessor networks is, in practice,
either fixed or with a severe upper bound.

(3) How to simulate, time and/or space efficiently, networks of a given parallel
architecture on various models of sequential machines.

Quite a general concept of simulafion (of one network on another) has been

defined in [9]. it describes the case where one processor of a network N, may be
simulated at different time moments by different processors of a network N? and,
moreover, that an edge connection of N, is simulated by the whole path in N,. In
many cases it is, however, sufficient to use two simpler concepts of simulation:
partial emulation and emulation.

Informally, a network Nz parfiail~ emulates a network N,, if to each processor
P of N, a processor P’ in Nz can be associated in such a way that any computation
on P in N, is simulated by a comptitation on P’ in N?_ Similarly, N, emulates N,,

if to each processor P in N, a processor p(P) in Nz can be associated in such a
way that for each edge e: P, + Pz in N!, any communication along e is simulate4
by a communication along 3n edge from ~(f’,) to p(P:).

An emuiatior 0: h, LUI N1 is caiied computational/y uniform if the same number

of processors of N, are mapped into each processor of N,, and also the same
number of edges of N, are mapped into each edge of N?_

The concepts of unrolling and of the isumarphism 01’ unrdhgs are important to
establish simulation results. Informally, the unrolling of a network N with a set of
nodes V, is the time-space transformation of the computational process or, in other
words, an infinite data dependence graph with nodes (q r), where u E V and I

represents time. Isomorphism of unroilings is then the usual graph isomorphism.

Example (Culti and Fris [8]). Simulation between homogeneous networks on two-
direuional cellular rings (CR,) (Fig. 9a) and homogeneous one-directional cellular
rings (OCR,) of n processors. Emulation of OCR,, on CR, is trivial. In order to
obtiiin a simulation in the opposite dire&m we proceed as follows: Let C,, be the
network with n nodes, where zoch node u,, j = I, 2,. . . , n is connected with nodes

q, V&l* v,@? by edges with the delay 1 (where 0 means the addition moduio n)
(see Fig. 9b for C,). The unroiiings of CR, and C, are isomorphic; the isomorphism
is established by the mapping 6 : (L’,, r) + (q, ,, I). This implies that each
homogeneous network on CR, is sitxlated in real time on C, and vice versa.

Fig. 9.

6’ J. Grush

Morec-/er, C, can clearly be partially emulated on OCR, in such a way that some
edges of C, are simulated by paths of length 2 on OCR,,.

Similar simulations have been established between two-directional cellular arrays,
one-directional cellular toroids and two-directional cellular toroids [S].

In connection with the study of complex systems the concept of totalistic CA has
been introduced [91, 921 and investigated in various papers. A totalistic CA is a
CA states of which are integers and a new state of a processor depends only on the
sum of the old states of the processo r and of its neighbours. It has been shown in
[I] that for each CA C there exists a totalistic CA C’ which simulates C without
loss of time. This result has been generalized in [21] for cellular automata over
arbitrary graphs.

Another interesting problem is to determine al! possible computationally uniform
emulations of large networks on smaller ones. It has been shown [4] that the number
of computationally uniform emulations of CR, on CR”,? (as well as of two-
dimensional cellular toroids of the size n x II on toroids of the size $n x in) is
exponential (at least exponential). On the other hand, there are exactly six computa-
tionally uniform emulations of perfect shuttle networks of 2” nodes on networks of
2”-’ nodes.

Another important problem is to find, for important classes of networks, say C,
another class of networks, say C’, such that on any network from C’, every network
from C can be emulated in a computationally uniform, or a!most uniform, way. If
such a class C’ exists, then a fixed-sire multiprocesso c system with a network from
C’ can be used to emulate almost uniformly any multiprocessor system with a
network from C; it is r.nly necessary to sufficiently enlarge the memory of the
processors and the width of the interconnections.

For rectangular arrays, such a class of networks, so-called pdynrorphic arrays, has
been shown in [35]. They are borderless networks B, of arrays of the size S, = F, x L,
whet-c

F,=l, F*=l, ~=~_,+I$_2 forj>t

are Fibonacci numbers and

L,=i, &=2, Lj= Lj_,+ Lj_, forj>Z

are Lucas numbers, and a processor of B, in the position (i, j) is connected with
processors in the nodes

((i+l)modF,,,(j+l)modL,), ((i-l)modF&(i-f)modI),

((i+l)mod F,,(j-l)mod L,,), ((i-1)mod F,,(j+l)mod L,).

It has been shown in [35], that on auy such network B,, any rectangular array C
with at most S,/& processors, can be emulated in such a way that into each
processor of B,, at most one processo r of C is mapped, and , moreover, arbitrarily
large rectangular array C’ can be emulated by B. in such a way that the number
of processors of C’ mapped into one processor of B, differs at most by O(log S,).

The last issue we deal with in this section concerns simulations of parallel networks
on sequential machines. The following theorems summarize some results concerning
simulations of arrays, trellises and tree networks on Turing machines and RAMS.

Theorem 4.1 (Chang et al. [171). (1) Any language accepted by a one-direcrianal

cellular tree network can be accepred by a deterministic Turing machine in space

(log’ n),/(log log n).
(2) Any language accepted by a one-directional cellular trellis network can be

accepted by a dererminisric Turing machine in space n&.

(3) Anv language accepted by a k-dimensional cellular array (of n A processors) can
be accepted bv a dererminisric Turing machine in space n’- Iih.

llworem 4.2 (lbarra 1431, tern9 and Gruska [IO]). (1) Any ltqucge acceppred by

a two-way k-dimensional cellular array can be accepted by a RAM in time

O(rP+‘/log n’ifl’r).

(2) Any language accepted by regular (mudular) [regular and modular]

(homogeneous) real-time trellis automaton can be acccpred by a one-tape Turing

machine in time O(n’), {O(n’logn)}, [O(n’m)], (O(n’)).

(Regular and modular trellis automata are defined in Section 6.)

5. Power of tree eomytatioms

One of the main goals in parallel computations is to do as much as possible in
(poly)logarithmic time From thi? point of view tree networks of finite automata
are perhaps the very basic model to investigate.

Two basic types of networks of finite automata have been intensively investigated.
In both cases the underlying interconnection structure is an infinite leafless tree that
is regular and nondegenerate in some reasonable way. In the case of iteratiw free

automata (ITA) [24], sequential input (output) goes to (from) the root processor
(Fig. tc) and only nonhomogeneous networks are of interest. We shall consider
here only the case where the underlying tree is balanced (i.e. each node has the
same number of ser. ;! , .?:!ri for ;ill relevant i, ith sons of all nodes are identical. In
the case of systolic free automata (STA), 1941 the input is parallel (Fig. Ic), one
input symbol per processor, and to the leftmost processors of the first level of
processors with enough processors. Processors are memoryless, flow of computation
is one-directional to the root, and most of the research has concentrated on the
study of STA as acceptors. Regularity condition from [94] requires that there are
only finitely many nonisomorphic subtrees and nondegenerativity condition requires
that there is a constant Q > 1 such that the jth level has at least a’ nodes.

The following theorem [19, 24, 251 shows that ITA are very powerful. In this
theorem, by ITA we denote ITA over a k-nary balanced tree and by ITM a
modification of ITA with Turing machines instead of finite automata as processors.

64 1. Grudu

Theorem 5.1. (1) 7he famiiy uf iunguages accepted by ITA in rime T(n) is rhe same

as rhe fami/y of languages accepred by ITM in rime T(n).

(2) Any language accepted by a nondeterministic Turing machine in time T(n) ran

be accepted by a ITA(2) in rime O(T(n)).
(3) 77te family of languages uccepfed by linear rime and real time ITA are identical.

(4) If 2 s s < t, then the family of hnguages accepted by ITA(s) in linear rime (ir!

real time) is identical (is smaller) than the family of languages acceped in Imear rime

(in real time) by ITA(I).
(5) 7%e family of ianguages accepted in linear time by ITA contains all CFL, and

ir is closed under Boolean opemrions, concatenation, Kieene closure and morphism.

In the above-mentioned model of ITA, and also of ITM, no restriction has been
made concerning the depth oi the treec really involved in particular computations.
and therefore actually exponentially many processors can be active during a compu-
tation. It is therefore of importance to investigate bow much can be done within
depth-bounded ITA computations, i.e. computations on ITA where processors only
of a restricted distance from the root can be used. Main results from [19; are
summarized in the following tkorem whete D(f(n))-bounkd lTA(k) denote
ITA(k), the depth of computation of which is bounded by f (n) for inputs of length
R

Theorem 5.2. (1) A D(T(n) Mounded ITM with each processor being an S(n)-space

bounded Turing machine, can be simulated by an D(0(T(n 1) + log S(n I)-bounded

ITA.
(2) S(n)-space bounded on-line Turing machines are equilwlenr to D(log S(n))-

hounded ITA.

(3) Every CFL can be accepted by a D(O(log n))-bounded ITA. Eoer), determinisric

CFL can b accepted in linear time by an ITA.

Proof of the main results of the previous theorem is based on a clever simuiation
of pushdown stacks of size S(n) on D(log S(n))-bounded ITA. A similar idea is
used in [a’] to implement such data structures as stacks, queues, priorit queues,
deques, and dictionaries on D(log n)-bounded ITA in such a way that, except for
dictionary, all data structures have a unit response time. For dictionary operations
the response time is O(log n) but instructions can be pipelined to the root at constant
speed.

In the case of systolic tree automata [31, 941, attention has been paid so far to
automata over trees with a finite base. (It is defined as a finite tree, all leaves of
which have the same distance from the root (Fig. IOa-c).) An infinite leafless tree
T is said to be over the finite base b, in short T(b)-tree, if it can be obtained from
b by an infinite process at each step of which all leaves of the tree designed at the
previous step are replaced by b-trees (see Fig. lOal-cl) for trees with bases from
Fig. IOa-c, respectively).

(a)

(al)

. .

(b)

.
. . .

.

Fig. IO.

(bl)

t-nary balanced STA, in short t-STA, are a special case of T(b)-trees (see Fig.
Mat). l-et T(b)-STA denote the class of all systolic tree automata over T(b) and
f(T(b)-STA), the family of languages accepted by P(b)-STA.

The foliowing theorem summarizes relations between the recognition power of
7(b)-STA for various bases [30].

M S-3. (I) Ifs and t are (are not) powers of the same integer, then thefamilies

f(s-STA) and f(t-STA) are identical (are incomparabre).

(2) ff the 6ase 6 has s leaves, then f (s-STA) s f (T(6).STA), and the equality

holds if and only if/or any 0 s i < h(6) (where h(6)) is the depth of 6). the set of

prime divisors of the number of nodes of the ith level of 6 is a subset of prime divisors

of s.

The main rest&s concerning the languages accepted by 2.STA are now presented.

Tbaxem S-4. (1) 7&e family f (2.STA) contains all regufar languages, and also some

languages very high in the language hierarchies. It is closed under Boolean operations,

right concatenation wirh regular sets, restricted concatenation and selective concatena-
tion. It is not closed under left concatenation with regular set, Kleene closure, morphism
and e-free morphism.

(2) Nondeterminstic 2-STA are as powerful as deterministic.

(3) The emptiness, finiteness and equivalence problems are decidable.

66 J. Grwka

Dec:dability of the emptiness problem for general STA is an open problem closely
lelated to well-known decision problems from formal power series [1 I].

There is a characterization of balanced STA in terms of special Turing machines
[46]. This characterization allows closure properties of E (2-STA) to be proved using
standard sequential computation techniques.

There are various modifications of STA concepts. Some of them consider different
input modes. For example stable and superstable STA at which inputs can be
submitted to processors of any level with sufficiently many processors and also to
any chosen subsequence of processo rs at that level [11,30]. STA where each input
is first permuted (by a host) are considered in [40] and STA with an (infinite)
program (represented by an infinite word, the initial part of which, of the same
length as a given input word, is supplied to inputs of processors in parallel with
the input word) are studied in [41]. Nonhomogeneous STA where each node-
processor uniquely determines sons’ processo rs are shown to be as powerful as
homogeneous ones. STA where each node is also connected to the left brother of
its left son and to the right brother of its right son, so called PC-trees, are investigated
in [27,33].

Fast recognition of regular languages by STA is of special interest. They can also
be recognized by STA over finite rrees with afeedbuck (which leads to an interesting
recognition of regular languages by programmable systolic trees) [22]. Problems
related to the optimization of STA as regular language recogn;zCrs are studied in
[51]. ST.4 have also been investigated as transducers [20] to obtain fast implcmenta-
tions of finite state automata realisable functions.

6. Powerand atNetueofliuararrayeompuratim

One-dimensional arrays of finite automata and their computations have been
intensively investigated in the last years and the results siizlv that they are not only
a very basic model of parallel architecture but also a model with many interesting
properties and of broader import;dncz for theory of compu*tit;ou.

It has also turned out that many practically important computational problems
can be solved sufficiently fast on linear arrays of simple processors [63,65].

One-dimensional cellular automata (CA) have also been used as a basic model
to study general problems of complexity because they seem to captuit, in a reason-
able sense, essential features responsible for complex behaviour of sytems composed
from simple elements. This is also closely connected with the approach considering
cellular automata as an alternative model of the physical world 1843. The underiying
goal is to extract from such a study some general features of such phenomena as
the self-organising behaviour, chaos and so on.

The importance of CA for such fundamental investigations and for the key
applications in computing makes it very desirable to obtain more insight into the

power and structure of linear array computations and to develop mod& and

concepts suitable for this purpose.
The power of cellular automata depends on the amount oicomputational resources

available (time, space, number of processors used j, on the type of interconnections,

and on the type of input.
Two basic models investigated are shown in Fig. 1 la, c. They are one-dimensional

cellular automata (with parallel input) and one-dimensional iterative arrays (with
serial input). Their one-directional versions (OCA and OIA) are shown in Fig. 11 b,
d. Perhaps the most interesting case is the one in which there is no additional

memory, i.e. for the input of the length n only n finite automata are v@qed. Such CA

and IA are called linear and denoted LCA and LEA (Fig. lie, f), and tbir

one-directionai versions ate denoted OLCA and OLIA.

(a)

0.0 ++@+ OCA (b)

-** -@I-@ 14 (cl

l ** +&@4 OIA (d)

. . .
-0 afl LCA (e)

- . . LIA (f)

,
n

Fig. II.

The basic problem is to determine how powerful is one-way communication
(especially comparing with two-way communication) and what is the relation
between computation in real-time (i.e. in time n for the input of the length n),
pseudo-real time (in the time 2n) and in linear time (in time cn for a constant c).
The following theorem summarixes recent results that show surprising power of
one-way communication and the relation of some of the open problems of this type
to other well-known problems (for example, to some closure properties).

lbeorem 6.1. (1) OLCA accept exactly the same family of languages as OLIA [45].
(2) lie fami/y of languages accepted by OLIA is an AFL, it is closed under

intersection, complementation and reversal; it contains some PSPACE-complete

I&l ges,

sp”

all languages accepted: by linear-time bounded alternating TM, by

n’-space bounded nondetenninistic TM and by multihead two-way nondeterministic

pushdown automata operating in c ““*” time (and therefore all CFL) [181.

68 1. Gmska

(3) ff 1 s r i s, then the family of languages accepted by OLIA in time n’ is smaller

rhan the family of languages accepted by OLIA in time n’ [181.
(4) 7Ie family of languages accepted by OLCA in linear-time is the same as the

family of ianguages accepted by OLIA in pseudo-real-time, and rhe same as the family

of languages accepred by LCA in real-:ime [45].
(5) 7Ie families of languages accepted by LCA m linear-rime and by LCA in

real-time are identical, if and only if rhe class of languages accepted by LCA in real-time
is closed under reversal [44].

(6) if LCA are more powerful than OLCA, then nonlinear-time LCA are more

powerful rhan linear-rime LCA [44].

The basic open problem is whether LCA are more powerful than OLCA.
A natural modification of the models of linear CA and LA is to consider models

where the amount of processor used is S(n) for an input of the length n. Various
results for these models have been obtained in [18] also for the case St n) < n.

A time space transformation of CA is shown in Fig. 12. By discarding vertical
edges and adding processors on edge crossings we obtain the trellis network of
memoryless processo rs shown in Fig 4. In the case of the vertical acceptance in
real-time we obtain so-called real-time trellis automata (ROTA) (see Fig. 13). The
following theorem summarizes basic properties of the families of languages accepted
by RlTA and their nondeterministic versions [13, IS,46 1.

Thawem 6.2. (I) 7ke family of languages accepted by deterministic RlTA is the
abstract family of deferministic hnguages which conrains all linear contexr-free

languages, some languages complete for pdynomial rime with respecf to log-space

Fig. 12.

Systolic romputali0n.s 69

reducibility, and it is closed under Boolean operations, injective length multiplying

morphism but not under morphism.

(2) 77te famil_v of languages accepted by nondetenninistic RTTA is on AFL that

contains all context-free languages, some NP-complete languages ond it is csntained

in DSPACE (n log n).

Real-time trellis automata are also a good model to study the power of various

input modifications. For example, it has been shown that superstable RlTA are as
powerful as ordinary ones [141. Superstability requires that the acceptance does not
depend either on the level (or row) of processors at which an input is submitted or
on inputs of which processor symbols of an input word are submitted, provided
the order is preserved. In [4O], it is shown that the power of RlTA can be increased
if input can be permuted (for example. by the host) before processing begins, and
basic properties of languages accepted by RITA with permuted inputs are investr-
gated. The power of RITA can also be increased if with any input of length n, the
prefix of the length n of a fixed infinite word (called program) is also submitted in
parallel to inputs of processors [41]. In [fM], a special input mode for linear arrays,
called pipeline processing, has been considered.

A trellis automaton can formally be defined as a quintuple A = (Z, f, f’. A, g),
where B is the input alphabet, f is the operating alphabet, A E f, f’r, f, is the
accepting alphabet, and g : f x f + f is the transition function such that g(A, A) = A.

With the automaton A one can associate the algebra E = (/I 1, r. *) of signature (I,
1,2),whete1(a)=g(A,a)andr(a)=g(a,A)foru~f-{A~,anda*b=g(~b)for
u, bc f-(A). Similarly with any algebra of signature (I, 1, 2) one can associate a
class of trellis automata that differ only in the input alphabet and in the accepting

alphabet.
With any algebra E = (f, f, r, *) of signature (I, I, 2) and any word w = wl, . . . w, E

f “*I. one can associate the mapping GPT(E, w) that is defined on {(i, j)l i E N,
j E N, i +j 3 n} as follows:

GPT(E,w)(i,j)=w, ifi+j=n,

GPT(E, w)(O.j) = /(GPT(E, w)(O, j - I)) _ ifj) n,

GPT(E,w)(i,O)=r(GPT(E,w)(i-l,O)) ifi>n,

GPT(E,,;~)(~,~)=(GPT(E, w)(i-l,j))*(GPT(E,w)(i,j-1))

ifi+j>n,tj#O.

The mapping GPT(E, w) is called the generalized Pascal triangle over (the
algebra) E and (the word) w, and it can be depicted in the fohm shown in Fig. 14,
where wii =GPT(E, w)(i, j). GPT(F, 1) for the algebra E = (N, id, id, +) is the usual
Pascal triangle, and for the algebra E = ((0, 11, id, id, @), with 0 being the addition
modulo 2, the GPT (E, 1) is shown in Fig. !5.

“0 l-l “l,“-1”-“n-l,A,U

“O,n+l”l,n”““““““,l “ri+l,O

“0,“+2”1,“+1............““+1,1”“+2,0

“~,n+~wl,~+2_“““““““-wn+2,1w~~~,~

. . .

. .
. . .

Fig. 14.

1

11

101

1111

10001

110011

1010101

11111111

100000001

Fig IS.

Generalized Pascal triangles can also been seen as special two-dimensional infinite
words that can be considered as a new abstract model of linear array imputations.
This new model naturally gives a rise to a new set of problems, for example:

(1) What is the structure of diagonals, columns and other components of GFT?
(2) What can be said about the density of occurrences of elements in GIT?
(3) When are the basic decision problems concerning the structure of GFT’

decidable? (For example the problem to determine whether a given symbol (a word
or a pattern) occurs at least once (or infinitely often) in a given GPT.)

(4) What are the conditions for a complete GFT(E, w) to have the so-called
self-embedding property (i.e. that there exist integers p. q such that GPT(E, w)(i + p,
j+ q) = GPT(E, w)(& j) for any i, j in IV)?

(5) With any GPT one can associate the language of row-words. What are the
properties of such languages?

All these problems are related to basic problems concerning linear array computa-
tions. In this way the model of generalized Pascal triangles brings new techniques
into the study of linear array computations. It also relates structural and com-
binatorial properties of GF7 (and thereby also of linear array computations) and
algebraic properties of the underlying algebras.

Generalized Pascal triangles have recently been intensively investigated especially
by Korec [59]. Some of the results are now presented.

71

In order to study properties of diagonals of GFT, it is convenient to a;wder
instead of algebras E =(A, 1, r, *) of the signature (1, !, 2), the algebras E’= (A, K,
4 r, *) of the signature (0, 1, 1, L), and to consider GPT(E’, K), in short GPT(E’),
as (complete) GPT over E’.

Diagona!s of GlT are clearly ultimately periodic. Let LPER(E’, k) denote the
smallest period of the kth left diagonal of the GPT(E’). Cleariy LPER(E’, k) s IA/“.

The algebra E’ is said to be the algebra wifh maximal lefr periods if LPER(E’, k) = iA{’

for any k E N.

Theorem 6.3 (Kochol (561). (i) E’=(A, K, I, r, *) is rhe algebra with maximal lefi

periods ifand only ifetmy word u E A* is the prejhc of at least one (ofinjnitely many)

rows of GPT(E’).
(ii) ‘Ihere is an algebra oj’ the signature (0, 1, I, 2) of curdinality n with maximal

left’ periods, ifand on& if n is odd_ There are exactly six di&rent algebras of cardinality

3 with maximal left periods_

(iii) If E’ = (A, K, 4 r, *) is the algebra with maximal left periods, then the operation

I is a cydic permutation of A_ the operation * is net associative, and for ewry a, b c A

there exists just one x E A such rhar a * x = 6.

The next problem we shall deal with is the density of occurrences of patticular
elements in GPT.

For an algebra E = (A, k r, f). for w c A* and x E A, let us define the density of
the occurrence of x in the GlT(E. w) as follows:

DENS@, w, x) = lim
number of x in first n rows of GPT(A, w)

I(-= number oiall elements in first n rows of GPT(A, w) *

The next theorem says that from the point of view of density, there exists, surprisingly,
a “universal” algebra at which one can achieve any feasible density of elements by
choosing a proper initial word.

Theorem a4 (Korec [60]). For any s E N rhere exists a finire algebra E = (A, k, r, *)
suchfhut(l,2,..., s} c A, and for ewry ordered s-rup/e (a,, . . . , a,) of nonnegariw

rationals such that

rhere is u w E A* such that DENS(E, w, i) = a,.

Decision problems, the self-embedding problems, and row-language characteriz-
ation problems are related, and they are also nicely related to algebraic properties
of the underlying algebras as the following theorem shows [59, 601. (The concept
of simple semilinear language (of degree k) that is used in the following theorem
is defined as follows. A language Lc Z’* is called simple linear (of degree k) if it
has the form f. = {u,u~u~u~. . . uku:uk+, 1 u,, D,, . . . , uk. 4. uk+, are fixed words in

72 1. Grrrcka

2 and i z 0). a language is called simple semilinear (of degree k) if it is a union
of finitely many simple linear languages (of degree k).)

lheorem 6.!j (Korec [58,59]). (i) 73eproblem whether a given elemenr occurs ar least

once (infinitely often) [and many other related problems] is undecidable even for GPT

overfinire algebras wirh a commurariue binary operation *.
(ii) All decision problems menrioned in (i) [and many orher relared problems] are

decidable for rhose GFT, row-languages of which are simple semilinear.

(iii) ifa GPT has the self-embedding properry, rhen the corresponding row-language

is simple similineaor and conrexr-free.
(iv) If rhe binary operarion of the algebra E is idemporenr and associarive, rhen all

Gm over E have rhe sewembedding properry.

Some GPT can be designed from simple modules (actually finite and rectangular
two-dimensional words) using simple recurrences; for example GPT from Fig. 15
can also be obtained using reccurrences from Fig. 16. This has led to the investigation
of so-called modular two-dimensional words, in short modular trellises, as mappings
T: N x N + f that can be designed in such a modular way. Formally, modular
trellises can be defined in a way that is a two-dimensional generalization of the way
a Thue-Morse infinite word is defined using iterated morphisms.

A trellis T over an alphabet f is said to be strictly (p, 9)-mo&rlar if

T=limp’(a)
j 4 3

where p maps f into rectangular two-dimensional words

b b,, Ii”
p(b)= ; --. ;

b b 91”’ 4P

such that a ,, = a. A trellis T over the alphabet f is said to be (p. q)-modular if T

can be obtained from a strictly (p, 9)-modular trellis T’ over an alphabet f’ by
renaming (i.e. if T(i, j) = fI(T’(i, j)) where 6 : f’+ f is a mapping). .A trellis 7‘ is
said to be [strictly] modular if it is [strictly] (p, 9)-modular for scme p, 9. For
example the trellis depicted in Fig. 14 is (2, 2)-strictly modular.

A. 6.
A.

J+1
= A. J A.

Jtt. J gj+l
= B. J 8.

Ja. J
J J

Fig 16.

Modular and strictly modular trellises have beon investigated in [9] where twc
quite different characterizations of them have also been derived. The first one
characterizes (p, q)-moduiar trellises as exactly those trellises 7 for which T(i, j)
can be computed by a so-called (p, q)-sorting automaton. (It is a finite automaton
such that if it receives on its input (in parallel) integers i and j (in pnary and
q-nary notation, respectively), then it comes to the state that uniquely determines
T(i, j)). Due to this characterization one can determine T(i, j) for a modular trellis
in time O(log(i +j)), while one seems to need, in general, time 6(i + j) to compute
T(i, j) for a GPT Z The second characterization characterizes modular trellises as
exactly those trellises that are fix-points of special substitutions on trellises. (A
substitution first partitions a trellis into rectangular words of the same size and then
replaces each such two-dimensional subwords by another two-dimensional finire
word, in general of a different size, but in all cases replacement is by subwords of
the same size.) It has been shown that the family of modular trellises is quite robust;
it is closed under various operations on trellises. Modularity of trellises of a special
type has also been studied. For example it has been shown [61] that a Pascal
triangle modulo p is modular (strictly modular), if and only if p is a prime power

(a prime).
RTTA is also a suitable model to study the power of nonhomogeneity in systolic

trellis computations. Three types of nonhomogeneous systolic RlTA have been
investigated in more detail [10,13,46,61]. Regular RlTA are such ntinnomogeneous
RlTA that their proccsso r distribution forms a CWT. In an analogical way mooular
RITA are defined as nonhomogeneous RlTA such that their processor distribution
forms a modular trellis. It has been shown that in the deterministic case both regular
and modular RlTA are more powerful than homogeneous ones. On the other hand
nondeterministic regular RlTA are as powerful as nondeterministic homogeneous
RlTA. (Whether the same holds true for modular RITA is an open problem.)
Regular and also modular RlTA may have a large number of different types of
processors and quite complicated distribution of them. It is therefore interesting
that for each regular (modular) RTTA one can design an equivalent regular
(modular) RlTA that uses only processors of two types [10, 571. This result also
indicates that the concepts of regular and modular RlTA are a reasonabie generaliz-
ation of the concept of homogeneous RTTA.

In [61] the third type of nonhomogeneous ROTA has been investigated, semilinear
RlTA. They are more powerful than homogeneous RlTA, and they seem to be less
powerful than regular and modular ROTA. A nonhomogeneous ROTA is said to be
semilinear of the degree k, if the set of the row words of the underlying trellis is
semilinear of degree k.

It has been shown [6i] that to every semilinear RlTA there is an equivalent
semilinear RITA that is both regular and modular. Moreover every semilinear ROTA
is equivalent with a ROTA that is both regular and semilinear of degree 3 and with
a semilinear ROTA of degree 2.

74 1. Gtusko

We have considered here systolic tree and trellis automata as two verv basic
models of parallel computations. A natural question is what is the relation between
their power. It has been shown in [131 that families of languages accepted by systolic
tree automata over balanced trees and by homogeneous ROTA are incomparable.
On the other hand it has recently been shown [93] that each language accepted by
a systolic tree automaton over a balanced tree can be accepted by a regular RlTA
and that simulation of systolic tree automata over a balanced tree on regular RlTA
can be done in quite a universal way.

[11 J. Albert and K. Culik II. Simple universal cellular automaton and its one-way and totalistic version,
Comphzx Sys@ms I (1987) l-16.

[2] M. Bar&a, An equational axiomatization of systolic systems. 771eoref. Compuf. sci 55 (1987) 265-289.
[3] M. Bartha, interpretations of systolic flowchart schemes. TR, Bolyai Institute. Szeged. 1989.
(41 H. L Bodlaender and J. van Lecuwen, Simulation of large networks on smaller networks, Dept

of Computer Science. TR-RULCS-844. University of L&red& 1984.
[51 S. D. Brooks, Reasoning about synchronous systems, Dcp~ of Computer Science, TR-CMUCS-84-

145. Carnegie-Mellon University, 1984.
[6] J. H. Chang, M. J. Chung, 0. H. !barra and K K Rao. Systolic tree implementations of data

structures, DepL of Computer Science. TR-85-32. University of Minnesota, 1985.
[7] K. Culik I! and C. Cbolfrut, On real-time allular automara and aellis automata, ACID Cjtiricu

21 (1984) 393-407.
[8] K. Culik II and 1. Fris. TopolOe;cal transforma!ion as 4 +-I in the design of systolic systems,

7%eore#. Conpcr sci 37 (1985) 183-216.
[9] A. &rnf and J. Gruska, Modular trellises. in: G. Rozenberg and A. Salomaa @is.). * Book o/

L (Springer, Ber!in, 1985) 45-61.
[IO] A. eem$ and J. Gruska. Modular real time trellis automata. Fund Infom~ IX (1986) ZU-2!!2.
[ll] K. Culik I!, J. Gruska and A. Salomaa. On a family of L languages resulting from systolic tree

automata. w Corqnrr. ti 23 (1983) 231-242.
[121 K. Culik II. J. Gruska and k Salomaa. Systolic automata for VLSI on balanced bees. Acta Injii

18 (1983) 335-344.
[131 K. Culik I!. J. Gruska and A. Salomaa, Systolic trellis automata. Parrs 1 and II, Inrem 1. Compur.

Math. IS (1984) 195-212; 16 (1984) 3-22.
[14] K. Culik II. J. Gruska and A. Salomaa. Systolic trellis automata: stabi!i?y, de&lability and

complexity, Injorm. and Conrad ‘II (1986) 218-230.
[IS] M. Chen, Very-high level programming in Crysta!, Dept of Computer Science, TR 506, Yale

University. 1986.
[16] J. H. Chang, 0. H. lbarra and M. A. Palis. Parallel parsing on a one-way array of finite state

machines, De@. of Computer Science TR-85-20. University of Minnesota, 1986.
(171 J. H. Chang. 0. H. lbarra and M. A. Palis. Efficient simulations of simple mod& of parallel

computation by time-bounded ATM’s and space bounded TM’s, in: Rut. ICALP’88, !_ecture Notes
in computer Science 317 (Springer, Berlin. 1988) 119-132.

[18’ J. H. Chang. 0. H. Ibarra and A. Vergis, On the power of one-way communications. Dept. of
Ci;mputer Science, T9-86-11. University of Minnesota, 1986.

[!9] K. Culik II, 0. H. Iban;r and S. Yu, Iterative tree arrays with logarithmic depth, Internat. 1. Compu~.
Moth. 20 (1986) 187-204.

1201 K. Culik II, H. Jiirgensen and K. Ma!c, Systolic tree architecture for some standard functions, Dept.
of Computer Science, TR-140. University of Western Ontario, 1985.

[21] K. Culik !I and J. Kar!mmPki.On totalisticsystolicnetworks, Infirm ptoeess. Let?. 26(1988) 231-236.
[22] K. Cu!lk II and H. Jiirgensen, Programmable finite automata, for VLSI, Inremut. 1. Compur. Math.

14 (1983) 259-275.

S~slolic rom;rurations 75

(231 P. Cappello and K. Steiglitx, Unifying VLSI design with geometric transformations. in: hoc. lE=‘F
Interna:. Conj on Pamllel Processing (l9SE I 448-451.

[24] K. Culik II and S. Yu. Iterative tree automata. Theon% Compur. St-i 32 (1984) 227-247.
[25] K. Culik II and S. Yu, Real-time, pseudo real-time and linear time ITA Tlreorer. Compur. sci 47

(1986) 15-X
[26] LX de Racr and J. Paredaens. A formal definition for systolic systcris. Dept. of Mathematics. TR,

University of Antwerp, 1984.
127) E. Fachini, R Francese. M. Napoli and D. Parente, RC-tree systolic automata: characterization

and property. Compur. Artificial Inre//igence 8 (1989) 53-82.
[28] P. Frison. P. Gachetand P. Quinton, Designing systolic arrays with DIASTOL, RR-578, INRl.4,1986.
[Zsj A. L. Fischer and H. T. Kung Synchronising large Vlli processo r arrays. IEEE Tram Cornpa

34 (1983) 734-740-
[30] E. Fachini, A. Maggiolo Schettini. G. Resta and D. Sangiorigi, Nonacceptability criteria and closure

properties for the ckss of languages accepted by binary systolic tree automata, Dept. Informatica
al Applicaxioni. TR-44-88, University of Salerno. 1988.

[31] E. Fachini, A_ Maggiolo Schettini. (2 Resta and D. Sangiorgi, Some structural prop&es of systolic
tree automata, Dept Informatica ed Applicazioni. TR-55-88, University of Salerno, 1988.

[32] M. A. Frumtin. Systolic programming (in Russiral, Vo~rtxsy K&met (1988) 101-120.
[33] E. Fachini and M. Napoli, C-tree systolic automat& 7%eorec Comprr. sa‘. SL (1988) 15%186.
1341 A. L Fischer. Memory and modularity in systolic array i.nplcmcntation. in: ptnc 1985 Con/: on

Pom&?f RucBsmg (1985) 99-101.
[35] A Fiat and A Shamir. Polymorphic arrays: a novel VLSI layout for systolic computers, in: f4oc

STDC (19g4) 37-45.
[36] N. Faroughi and M. A Shanblatt, Systematic pncration and enumeration of systolic arrays from

the algorithw. in: I4oc InrernoL Curt$ on M m University Part (1987) 844-847.
[37] J. Gruska Systolic automata: power. cbaractmizatum. nonhomogeneity. in: Prac MFICS‘H, Lecture

Notes in Computer Science 176 (Springer. Retiin. 19g4l 32-49.
[38) M. Hermessy, Proving systolic systems correct. in: #%c 7’OPLAS (1986) 3u-J87.
[39] !I. W. Hotnick, A unified approach to the analysis and synthesis of systolic arrays, Dept of Electrical

Engineering. TR-1039. Univetsity of IlIinois, 1985.
[40] 1. HnmtkovH and D. Patdub&& Some compkrity aspet% of VLSI computations. On the power

of input bit permutations in tree and ttellis automata. Camprr. A@iciaI fn&/igenee 7 (1988) 397-412.
[41] J. Htomkovit and D. Patdubsk& Some complexity aspects of VLSI computations, VLSI circuits

with pmgnms, Cmymr A@&@ frudtigence 7 (1988) 481-496.
[42] C. H. Huang and C. Lengauer, An implemented method for incremental systolic design. in: Rot.

PARLE. Lecture Nom in Computer Science 29) (Springer, Rerlin. 1987) 160-177.
[43] 0. H. Ibana. Systolic arrays: characterization and complexity, in: phc. MFCS, Lecture Notes in

Computer Science 233 (Springer. Rerlin, 1986) 140-153.
[44] 0. H. Ibarra and T. Jiang, On some open problems concerning cellular arrays, Dept. of Computer

Science. TR, Univenity of Minnesota, 1987.
[SS] 0. H. Ibarra and T. Jiang, On one-way cellular arrays. SIAM J. Compur. I6 (1987) 1135-l ; SJ.
[46] 0. H. Ibarra and S. M. Kim. Characterizations and computational complexity of systolic trellis

automata, Tlreoret. Cornput sci 29 (1984) 123-153.
[47] 0. H. Ibana and S. M. Kim. A characterization of systolic binary tree automata and applications.

Acra Inform 21 (1984) 193-207.
[48] 0. H. Ibarra and M. A. Palis. Two-dimensional systolic arrays: characterizations and applications,

77tcorrr. Comput ScL 57 (1988) 47-86.
1491 0. H. Ibatra, M. A PaIis and S. M. Kim, Designing systolic algorithms using sequential machines,

in: Phxc SXJC (1984) 46-55.
[Xl] H. 0. Ibarra, M. A. Palis and S. M. Kim, Some results concerning linear iterative (systolic) arrays,

1. Rtm/le/ Distriburice Compur. 2 (1985) 182-218.
[SI] H. Jiirgensen and A Salomaa, Syntactic monoids in the construction of systolic tree automata.

Inremat. J. Ctnnpur lnfom Sci I4 (1985) 35-49.
1521 H. T. Kung and M. S. Lam, Fault-tolerance and two-level pipelining in VLSI systolic arrays, in:

f+oc Con$ Adwnced Research in VLSI. MIT (1984).
[53] H. T. Kung and M. S. Lam, Wafer-scaie integration and two level pipelined implementations of

systolic arrays, 1. Pam/k4 Distributed Procuss. 1 (1984).

76 1. Gruka

[54] H. T Kung and C. E. Leiserson, Systolic arrays (for VLSI). in: Sparse Mo1ti.x fiJce&ingJ (SO,-.
for rndusxial and .4pp!ied Mathematics, 1978) 256-282.

[S] C. J. Kw, B. C. Levy and B. R Musirus, The specification and verification of systolic wave

algorithms, TR, Dept. of Electrical Engineering and Computer Sciences, MIT, Cambridge, 1984.

[56] M. Kochol, Generalized Pascal triangles with maximal left periods, Compur. Artifciu/ Inre//igence

6 (1987) 54-76.
1571 I. Korec, Two kinds of processors are sufficient and large operating alphabets are necess:;ry for

regular trellis automata languages, BulL EATCS 23 (1382: 35-42.
[58] I. Korec, Generalized Pascal triangles, decidability results, Actu ~eorh Unit. Comeniaa 4647

(1985) 93-130.
;59] I. Korec, Generalized Pascal triangles (in Slovak). Doktoral Thesis. Comenius University.
[60] 1. Korec, Asymptotical densities in genealized Pascal triangles. Compur. Arri$ciial Inre//igence 5

t 1986) 187-198.
[61] 1. Korec. Semilinear real-time trellis automata, in: Thor. FCr89. Lecture Notes in Computer Science

(Spi %gcf, Berlin, 1987).
[62] S. Y. Kung. On supercomputing with systolic/wavefront arary processors, ti_ IEEE 72 (1984)

867-884.
(63] H. T. Kung, Systolic algorithms for the CMU warp processor. Dept. of Computer Science, TR-CM U-

CS84-158. 1984.
[64] H. T. Kung, Memory requirements for balanced computer architectures. Dept. of Computer Science.

TR, Carnegie-Mellon University, 1985.
[65] H. T. Kung, Warp Demo, Dept of Computer Sciena, Carnegie-Mellon University. 1986.
(661 H. T. Kung. Special-purpose supercomputers. in: h&mwion hxessing IFIPtt6. Participants

Edition I1986) 565-570.
(671 L. Kossen. and W. P. Weijland. Comnms~ proofs of systolic algorithms: palindroms and sorting.

Dept. of Computer Science, TR-WI-87-04. University of Amsterdam. 1987.
(681 F. 7. Leighton and C. E. Leiserson, Water scale integtation of systolic arrays. fEEE Tmns Comput.

41(1985) 448-461.
[69] M. Lam and J. f&stow. A transformational model of VLSI systolic d:sign. in: ptoc 616 /memar.

Symp. on Corrtpsuer Ho&ear Deser@ia~ Langrmges and Iheir Applirarions. IFlP i 1983) 65-67.

[70] C. E. Leiserson and J. B. Saxc. Optimizing synchronous systems. m: f%nc F(iLS t 1981) 23-ja.
[71] C. E. Leiserson. F. M. Rose and J. B. Saxc. Dptimising synchronous circuitry by retiming. in: Pmc

CO/I& Con/: on VW Large Scuk /nfegmrion (1983) 87-1 lb
[72] G.-J. Li and B. W. Wah, The design of optimal systolic arrays, fEEE Tmnr Comput. 34 (1985) 66-77.

[731 B. L&per, Description and synthesis of systolic arrays. Dept of Numerical Analysis and Computing
Science, The Royal institute of Tecbno@y, Stockholm. 1986.

[74] D. I. Moldovan, Dn the design of algorithms for VLSI systems. &x. IEEE 71 (1983).

[75] W. L Miranker and A Winkler. Space-time representations of computational structures. Computing
32 (1984) 93-114.

[76] D. Pardubski, Closure properties of the family of languages detined by systolic tree automata,
Cowtpur. Arr&iaf Inrei&enee 7 (1988) 59-64.

[77] P. Quinton, The systematic design of systolic arrays. TR-193, IRISA, 1983.
[78] M. Rem. Trace theory and systolic computations, Dept. of Mathematics and Computer Science.

TR, Eindhoven University of Technology, 1988.
1791 S. Rajopadhye. S. Purushothaman and R. Fujimoto. Dn synthesising systolic arrays from recurrent

equations with linear dependencies, in: Fkoc. Foundotk~~ of sofrvow Techndqv ond 77teorerical
Cornprter Science, Lecture Notes in Computer Science 241 (Springer, Berlin. 1986) 488-503.

[80] S. G. Sedukhin, Systematic approach to the design of VLSI networks (in Russian), Preprint, Academy
of Sciences, Novosibirsk, 1985.

[81] S. G. Sedukhin, Design and analysis of systolic algorithms for algebraic path problem, TR,
Computing Center, Academy of Sciences, Novosibirsk 1987.

[82] S. G. Sedukhin, Design and analysis of systolic algorithms for the algebraic path pmblems. TR,
Computing Ccutc., Academy of Sciences, Novosibirsk, 1988.

1831 S. G. Sedukhin and E. V. Trishina, From the set of recurrent equations to the set of systolic wavefmnt
algorithms, TR, Computing Center, Academy of Sciences, Novosibirsk. 1989.

[84) T. Toffoli. Cellular automata as an alternative to (rather than an approximation of) differential
equALions in modelling physics. in: Ce//ular Automora, hoc. Interdisciplinotyv Workshop, Los Alamos

(North-Holland, Amsterdam, 1983) 117-127.
[SS] P. J. Varman and I. V. Ramakrishnan, A fault-tolerant VLSI matrix multiplier, Dept. of Computer

Science, TR-85-29, SiiNY at Stony Brook, 1985.

[86] R Vollmar, Some remarks on pipelined processing by cellular automata, Compur. Arr$rio/ he/-

ligence 6 (1987) 263-278.

1871 R Vollsar. Basic research for cellular processing. in: Rot. P/lRCELf_A (Akademie-Verlag, Berlin,

1988) 205-222.
[&8] U. Weisser anJ A. Davis. A wavefront notation tool for VLSI array design, in: VLSI Systems und

Computations (Computer Science Press. 1981) 226-234.

[89] W. P. Weijland, A systolic algorithm for matrix-veaor multiplication. in: Fmc. Cnmpuring Scicvce

in The Netherhnds (1987) 143-160.

[90] S. Wolfram. Statistical mechanics of cellular automata. R~c_ Modern ph?l 55 (1983 1 &II-644.
1911 S. Wolfram. Computation theory af ccliular automata. Comm Mafk HIJX % (1984) 15-57.

[92] S. Wolfram, t’niversahty, and complexity in cellular automata, phxsim IOD (19841 l-35.

[93] E. Fachini. J. Gruska, A. Maggiolo Sch*ttn;i and D. Sangiorgi. Simulation of systolic tree automata

on trellis automata TR Dipanimento di Informatica, Universita di Pisa.

[94] IL Culik II. A. Satomaa and D. Wood. Systolic tree acceptors. RAIRO Inform. 7Wor. 18 (1984)

53-69.

