66 research outputs found

    The optogenetic promise for oncology: Episode I

    Get PDF
    As light-based control of fundamental signaling pathways is becoming a reality, the field of optogenetics is rapidly moving beyond neuroscience. We have recently developed receptor tyrosine kinases that are activated by light and control cell proliferation, epithelial–mesenchymal transition, and angiogenic sprouting—cell behaviors central to cancer progression

    Targeting receptor tyrosine kinases in malignant pleural mesothelioma: Focus on FGF-receptors

    Get PDF
    Fibroblast growth factor receptors (FGFRs) constitute a subfamily of receptor tyrosine kinases. Four different receptors, FGFR1-4, bind 18 different fibroblast growth factors (FGFs) and signal mainly along the mitogen-activated protein kinase (MAPK), the phosphatidylinositol 3 kinase (PI3K) and the phospholipase c gamma (PLC?) pathway. Physiologically, they are major regulators of embryonic development and metabolism. Deregulation of FGFR signals is increasingly recognized to play important roles in malignant diseases and may constitute a feasible therapeutic target. We recently investigated their role in malignant pleural mesothelioma (MPM), an aggressive malignancy mainly caused by asbestos exposure and with currently limited therapeutic options. We demonstrated high expression of several FGFs/FGFRs, especially FGFR1, FGF2 and FGF18 in cultured tumor cells and tissue specimens and identified FGFR-mediated signals as major driver of MPM cell growth, survival and migration. FGFR blockade by a tyrosine kinase inhibitor or by a dominant-negative receptor construct resulted in reduced MPM growth in vitro and in vivo and, furthermore, enhanced the efficacy of chemo- or radiotherapy. Several other receptor tyrosine kinases, including EGFR, MET and AXL were found to be overexpressed in MPM but translation into clinically successful therapeutic approaches has not yet been achieved. Inhibition of FGF-receptors may have the advantage of targeting both the tumor cells as well as the tumor vasculature and should be further evaluated

    Light-assisted small-molecule screening against protein kinases

    Get PDF
    High-throughput live-cell screens are intricate elements of systems biology studies and drug discovery pipelines. Here, we demonstrate an optogenetics-assisted method that avoids the need for chemical activators and reporters, reduces the number of operational steps and increases information content in a cell-based small-molecule screen against human protein kinases, including an orphan receptor tyrosine kinase. This blueprint for all-optical screening can be adapted to many drug targets and cellular processes

    The plasma membrane Ca2+ pump PMCA4b inhibits the migratory and metastatic activity of BRAF mutant melanoma cells

    Get PDF
    Oncogenic mutations of BRAF lead to constitutive ERK activity that supports melanoma cell growth and survival. While Ca2+ signaling is a well-known regulator of tumor progression, the crosstalk between Ca2+ signaling and the Ras-BRAF-MEK-ERK pathway is much less explored. Here we show that in BRAF mutant melanoma cells the abundance of the plasma membrane Ca2+ ATPase isoform 4b (PMCA4b, ATP2B4) is low at baseline but markedly elevated by treatment with the mutant BRAF specific inhibitor vemurafenib. In line with these findings gene expression microarray data also shows decreased PMCA4b expression in cutaneous melanoma when compared to benign nevi. The MEK inhibitor selumetinib-similarly to that of the BRAF-specific inhibitor-also increases PMCA4b levels in both BRAF and NRAS mutant melanoma cells suggesting that the MAPK pathway is involved in the regulation of PMCA4b expression. The increased abundance of PMCA4b in the plasma membrane enhances [Ca2+ ]i clearance from cells after Ca2+ entry. Moreover we show that both vemurafenib treatment and PMCA4b overexpression induce marked inhibition of migration of BRAF mutant melanoma cells. Importantly, reduced migration of PMCA4b expressing BRAF mutant cells is associated with a marked decrease in their metastatic potential in vivo. Taken together, our data reveal an important crosstalk between Ca2+ signaling and the MAPK pathway through the regulation of PMCA4b expression and suggest that PMCA4b is a previously unrecognized metastasis suppressor

    High circulating activin A level is associated with tumor progression and predicts poor prognosis in lung adenocarcinoma

    Get PDF
    Activin A (ActA)/follistatin (FST) signaling has been shown to be deregulated in different tumor types including lung adenocarcinoma (LADC). Here, we report that serum ActA protein levels are significantly elevated in LADC patients (n=64) as compared to controls (n=46, p=0.015). ActA levels also correlated with more advanced disease stage (p<0.0001) and T (p=0.0035) and N (p=0.0002) factors. M1 patients had significantly higher ActA levels than M0 patients (p<0.001). High serum ActA level was associated with poor overall survival (p<0.0001) and was confirmed as an independent prognostic factor (p=0.004). Serum FST levels were increased only in female LADC patients (vs. female controls, p=0.031). Two out of five LADC cell lines secreted biologically active ActA, while FST was produced in all of them. Transcripts of both type I and II ActA receptors were detected in all five LADC cell lines. In conclusion, our study does not only suggest that measuring blood ActA levels in LADC patients might improve the prediction of prognosis, but also indicates that this parameter might be a novel non-invasive biomarker for identifying LADC patients with organ metastases

    Molecular interplay betweeen cáncer cell fatty acid metabolism and oncogenic signaling as resource for novel treatment strategies against ovarian cancer

    Get PDF
    The metabolic oncogene fatty acid synthase (FASN) is overexpressed in 80% of ovarian cancers (OC) and indicates poor prognosis. Exposure of OC to inhibitors of FASN elicits a complex stress response that interferes with receptor-PI3K-mTORC1 signaling (briefly designated 'PI3K pathway'). Here we demonstrate that FASN inhibitors capitalize on multiple mechanisms to interfere with the PI3K pathway, and that silencing this cascade is crucial for the anticancer action of the drugs
    corecore