4 research outputs found

    The de.NBI / ELIXIR-DE training platform - Bioinformatics training in Germany and across Europe within ELIXIR

    Get PDF
    Wibberg D, Batut B, Belmann P, et al. The de.NBI / ELIXIR-DE training platform - Bioinformatics training in Germany and across Europe within ELIXIR. F1000Research. 2019;8: 1877 .The German Network for Bioinformatics Infrastructure (de.NBI) is a national and academic infrastructure funded by the German Federal Ministry of Education and Research (BMBF). The de.NBI provides (i) service, (ii) training, and (iii) cloud computing to users in life sciences research and biomedicine in Germany and Europe and (iv) fosters the cooperation of the German bioinformatics community with international network structures. The de.NBI members also run the German node (ELIXIR-DE) within the European ELIXIR infrastructure. The de.NBI / ELIXIR-DE training platform, also known as special interest group 3 (SIG 3) 'Training & Education', coordinates the bioinformatics training of de.NBI and the German ELIXIR node. The network provides a high-quality, coherent, timely, and impactful training program across its eight service centers. Life scientists learn how to handle and analyze biological big data more effectively by applying tools, standards and compute services provided by de.NBI. Since 2015, more than 300 training courses were carried out with about 6,000 participants and these courses received recommendation rates of almost 90% (status as of July 2020). In addition to face-to-face training courses, online training was introduced on the de.NBI website in 2016 and guidelines for the preparation of e-learning material were established in 2018. In 2016, ELIXIR-DE joined the ELIXIR training platform. Here, the de.NBI / ELIXIR-DE training platform collaborates with ELIXIR in training activities, advertising training courses via TeSS and discussions on the exchange of data for training events essential for quality assessment on both the technical and administrative levels. The de.NBI training program trained thousands of scientists from Germany and beyond in many different areas of bioinformatics. Copyright: © 2020 Wibberg D et al

    Workflows Community Summit:Bringing the Scientific Workflows Community Together.

    No full text
    Scientific workflows have been used almost universally across scientific domains, and have underpinned some of the most significant discoveries of the past several decades. Many of these workflows have high computational, storage, and/or communication demands, and thus must execute on a wide range of large-scale platforms, from large clouds to upcoming exascale high-performance computing (HPC) platforms. These executions must be managed using some software infrastructure. Due to the popularity of workflows, workflow management systems (WMSs) have been developed to provide abstractions for creating and executing workflows conveniently, efficiently, and portably. While these efforts are all worthwhile, there are now hundreds of independent WMSs, many of which are moribund. As a result, the WMS landscape is segmented and presents significant barriers to entry due to the hundreds of seemingly comparable, yet incompatible, systems that exist. As a result, many teams, small and large, still elect to build their own custom workflow solution rather than adopt, or build upon, existing WMSs. This current state of the WMS landscape negatively impacts workflow users, developers, and researchers. The "Workflows Community Summit" was held online on January 13, 2021. The overarching goal of the summit was to develop a view of the state of the art and identify crucial research challenges in the workflow community. Prior to the summit, a survey sent to stakeholders in the workflow community (including both developers of WMSs and users of workflows) helped to identify key challenges in this community that were translated into 6 broad themes for the summit, each of them being the object of a focused discussion led by a volunteer member of the community. This report documents and organizes the wealth of information provided by the participants before, during, and after the summit

    Preprint: "Be Sustainable", Recommendations for FAIR Resources in Life Sciences research: EOSC-Life's Lessons

    No full text
    "Be SURE - Be SUstainable REcommendations" The main goals and challenges for the Life Science (LS) communities in the Open Science framework are to increase reuse and sustainability of data resources, software tools, and workflows, especially in large-scale data-driven research and computational analyses. Here, we present key findings, procedures, effective measures and recommendations for generating and establishing sustainable LS resources based on the collaborative, cross-disciplinary work done within the EOSC-Life (European Open Science Cloud for Life Sciences) consortium. Bringing together 13 European LS Research Infrastructures (RIs), it has laid the foundation for an open, digital space to support biological and medical research. Using lessons learned from 27 selected projects, we describe the organisational, technical, financial and legal/ethical challenges that represent the main barriers to sustainability in the life sciences. We show how EOSC-Life provides a model for sustainable FAIR data management, including solutions for sensitive- and industry-related resources, by means of cross-disciplinary training and best practices sharing. Finally, we illustrate how data harmonisation and collaborative work facilitate interoperability of tools, data, solutions and lead to a better understanding of concepts, semantics and functionalities in the life sciences. IN PRESS EMBO Journal: https://www.embopress.org/journal/14602075This research is mainly a product of the EOSC-Life European programme funding from the European Union's Horizon Europe research and innovation programme under grant agreement NÂș824087. Complementary support was provided through EU funded project AgroServ (grant agreement NÂș101058020), EU funded project BY-COVID (grant agreement NÂș101046203), EU funded project DANUBIUS-IP (grant agreement NÂș101079778), EU funded project EMPHASIS-GO (grant agreement NÂș101079772), EU funded project FAIRplus (IMI grant agreement NÂș802750), EU funded project FAIRsharing (Wellcome grant agreement NÂș212930/Z/18/Z), EU funded project ISIDORe (grant agreement NÂș101046133), EU funded project Precision Toxicology (grant agreement NÂș965406), UKRI DASH (grant agreement NÂșMR/V038966/1). Special thanks to T. Biro and her radical collaboration team from Research Data Alliance who gave us great inspiration on how to lead this radical collaboration work
    corecore