1,067 research outputs found

    Comparative analysis of acoustic testing techniques, exhibit A Final report

    Get PDF
    Calculation methods for vibration responses of spacecraft structural members to acoustic field

    Charge modulations vs. strain waves in resonant x-ray scattering

    Full text link
    A method is described for using resonant x-ray scattering to separately quantify the charge (valence) modulation and the strain wave associated with a charge density wave. The essence of the method is a separation of the atomic form factor into a "raw" amplitude, fR(w), and a valence-dependent amplitude, fD(w), which in many cases may be determined independently from absorption measurements. The advantage of this separation is that the strain wave follows the quantity |fR(w) + fD(w)|^2 whereas the charge modulation follows only |fD(w)|^2. This allows the two distinct modulations to be quantified separately. A scheme for characterizing a given CDW as Peierls-like or Wigner-like naturally follows. The method is illustrated for an idealized model of a one-dimensional chain.Comment: 6 pages, 4 figure

    Pressure Induced Hydration Dynamics of Membranes

    Full text link
    Pressure-jump initiated time-resolved x-ray diffraction studies of dynamics of the hydration of the hexagonal phase in biological membranes show that (i) the relaxation of the unit cell spacing is non-exponential in time; (ii) the Bragg peaks shift smoothly to their final positions without significant broadening or loss in crystalline order. This suggests that the hydration is not diffusion limited but occurs via a rather homogeneous swelling of the whole lattice, described by power law kinetics with an exponent β=1.3±0.2 \beta = 1.3 \pm 0.2.Comment: REVTEX 3, 10 pages,3 figures(available on request),#

    Distribution of velocities and acceleration for a particle in Brownian correlated disorder: inertial case

    Full text link
    We study the motion of an elastic object driven in a disordered environment in presence of both dissipation and inertia. We consider random forces with the statistics of random walks and reduce the problem to a single degree of freedom. It is the extension of the mean field ABBM model in presence of an inertial mass m. While the ABBM model can be solved exactly, its extension to inertia exhibits complicated history dependence due to oscillations and backward motion. The characteristic scales for avalanche motion are studied from numerics and qualitative arguments. To make analytical progress we consider two variants which coincide with the original model whenever the particle moves only forward. Using a combination of analytical and numerical methods together with simulations, we characterize the distributions of instantaneous acceleration and velocity, and compare them in these three models. We show that for large driving velocity, all three models share the same large-deviation function for positive velocities, which is obtained analytically for small and large m, as well as for m =6/25. The effect of small additional thermal and quantum fluctuations can be treated within an approximate method.Comment: 42 page

    Is This a Joke? Detecting Humor in Spanish Tweets

    Full text link
    While humor has been historically studied from a psychological, cognitive and linguistic standpoint, its study from a computational perspective is an area yet to be explored in Computational Linguistics. There exist some previous works, but a characterization of humor that allows its automatic recognition and generation is far from being specified. In this work we build a crowdsourced corpus of labeled tweets, annotated according to its humor value, letting the annotators subjectively decide which are humorous. A humor classifier for Spanish tweets is assembled based on supervised learning, reaching a precision of 84% and a recall of 69%.Comment: Preprint version, without referra

    Topographical characterization and microstructural interface analysis of vacuum-plasma-sprayed titanium and hydroxyapatite coatings on carbon fibre-reinforced poly(etheretherketone)

    Get PDF
    In the present study, topographical characterization and microstructural interface analysis of vacuum-plasma-sprayed titanium and hydroxyapatite (HA) coatings on carbon fibre-reinforced polyetheretherketone (CF/PEEK) was performed. VPS-Ti coatings with high roughness values (Ra=28.29±3.07 μm, Rz=145.35±9.88 μm) were obtained. On this titanium, intermediate layer HA coatings of various thicknesses were produced. With increasing coating thickness, roughness values of the HA coatings decreased. A high increase of profile length ratio, Lr, of the VPS-Ti coatings (Lr=1.45) compared to the grit-blasted CF/PEEK substrate (Lr=1.08) was observed. Increasing the HA coating thickness resulted in a reduction of the Lr values similar to the roughness values. Fractal analysis of the obtained roughness profiles revealed that the VPS-Ti coatings showed the highest fractal dimension of D=1.34±0.02. Fractal dimension dropped to a value of 1.23-1.25 for all HA coatings. No physical deterioration of the CF/PEEK substrate was observed, indicating that substrate drying and the used VPS process parameter led to the desired coatings on the composite material. Cross-section analysis revealed a good interlocking between the titanium intermediate layer and the PEEK substrate. It is therefore assumed that this interlocking results in suitable mechanical adhesive strength. From the results obtained in this study it is concluded that VPS is a suitable method for manufacturing HA coatings on carbon fibre-reinforced PEEK implant material

    Photonic excess noise and wave localization

    Get PDF
    This is a theory for the effect of localization on the super-Poissonian noise of radiation propagating through an absorbing disordered waveguide. Localization suppresses both the mean photon current I and the noise power P, but the Fano factor P/I is found to remain unaffected. For strong absorption the Fano factor has the universal value 1+3f/2 (with f the Bose-Einstein function), regardless of whether the waveguide is long or short compared to the localization length.Comment: 3 pages including 3 figure

    Enhanced dimerization of TiOCl under pressure: spin-Peierls - to - Peierls transition

    Full text link
    We report high-pressure x-ray diffraction and magnetization measurements combined with ab-initio calculations to demonstrate that the high-pressure optical and transport transitions recently reported in TiOCl, correspond in fact to an enhanced Ti3+-Ti3+ dimerization existing already at room temperature. Our results confirm the formation of a metal-metal bond between Ti3+ ions along the b-axis of TiOCl, accompanied by a strong reduction of the electronic gap. The evolution of the dimerization with pressure suggests a crossover from the spin-Peierls to a conventional Peierls situation at high pressures.Comment: 9pages, 4 figure

    Quasiparticle coherence and the nature of the metal-insulator phase transition in Nax_xCoO2_2

    Full text link
    Layered cobaltates embody novel realizations of correlated quantum matter on a spin-1/2 triangular lattice. We report a high-resolution systematic photoemission study of the insulating cobaltates (Na1/2CoO2 and K1/2CoO2). Observation of single-particle gap opening and band-folding provides direct evidence of anisotropic particle-hole instability on the Fermi surface due to its unique topology. Kinematic overlap of the measured Fermi surface is observed with the 3\sqrt{3}x3\sqrt{3} cobalt charge-order Brillouin zone near x=1/3 but not at x=1/2 where insulating transition is actually observed. Unlike conventional density-waves, charge-stripes or band insulators, the on-set of the gap depends on the quasiparticle's quantum coherence which is found to occur well below the disorder-order symmetry breaking temperature of the crystal (the first known example of its kind).Comment: 4+ pages, 5 figure
    • …
    corecore