9 research outputs found

    Prolonged history of silicic peralkaline volcanism in the eastern Pacific Ocean

    Get PDF
    Socorro Island, Mexico, is an alkaline and peralkaline volcanic island located in the eastern Pacific Ocean on a mid-ocean ridge spreading center that was abandoned at ∼3.5 Ma. Silicic peralkaline rocks comprise up to 80% of the surface of the island, rendering Socorro virtually unique in the Pacific Ocean. Precise, replicate 40Ar/39Ar ages of 21 peralkaline trachytes and rhyolites reveal a history of episodic volcanic activity from ∼540 to 370 ka that may have culminated with caldera formation; repose periods between these episodes may have had maximum duration of ∼30 kyr. After up to 200 kyr of quiescence, 40Ar/39Ar ages indicate that postcaldera silicic peralkaline activity commenced by 180 ka, forming the Cerro Evermann Formation. Postcaldera mafic alkaline lavas of the Lomas Coloradas Formation erupted dominantly between 70 and 150 ka based upon relative age relations. The dominant lithology of precaldera and syncaldera silicic peralkaline deposits on Socorro is nonfragmental and nonvesicular and lacks lithic fragments and fiamme; despite this, numerous lines of evidence including welding zonation, presence of a proximal ignimbrite or co-ignimbrite deposit, association with a caldera, and compositional heterogeneity within eruptive units suggest that they are dominantly ash flow tuffs. A change in eruptive style, from predominantly explosive to predominantly effusive, followed caldera formation and suggests that a change in the efficacy of magma degassing may be linked to caldera formation. On the basis of the presence of a caldera, the magma chamber associated with Socorro Island is shallow and probably resides within the upper oceanic crust or the edifice. This together with a prolonged history of silicic magmatism indicates that intrusion of mafic magma maintained thermal viability of the magmatic plumbing system. The minimum calculated growth rate for the entire volcanic edifice (7 × 10−4 km3/yr) exceeds those of nonhotspot off-axis volcanoes in the Pacific by almost an order of magnitude. Eruption rates for subaerial phases on Socorro may be several orders of magnitude smaller than this growth rate and are comparable to subaerial eruption rates of isolated ocean islands related to mantle plumes

    Temporal and Crustal Effects on Differentiation of Tholeiite to Calcalkaline and Ferro-trachytic Suites, High Lava Plains, Oregon, USA

    Get PDF
    Strongly bimodal, basalt-rhyolite volcanism of the High Lava Plains Province of Oregon followed the Middle Miocene flood basalts of the Pacific Northwest and extends to recent time. During the 8 m.y. of volcanism recorded in the central High Lava Plains, in western Harney Basin, three distinct mafic magmatic trends originate from primitive high-alumina olivine tholeiites (HAOT); they are tholeiitic, calcalkaline and ferro-trachytic. Tholeiitic basalts occur throughout the history and their compositions are derived by crystal fractionation while traversing the crust and mixing with evolved mafic magmas. Scavenging of apatite from crustal rocks and minor contamination with felsic melts accounts for P, incompatible element enrichments and increasing tilts of incompatible element patterns with differentiation. The calcalkaline mafic suite occurs in temporal association with abundant silicic volcanism and is the only suite with Fe decreasing with Mg. Calcalkaline compositions are derived from evolved tholeiitic basalt by crystal fractionation coupled with assimilation of felsic crust or crustal melts. The ferro-trachytic suite occurs mainly late, is highly enriched in incompatible element with patterns parallel to tholeiites from which it is derived by protracted fractionation and recharge. The three suites primarily reflect changes in magma flux and crustal interactions in time. High magma flux promotes crustal melting and contamination of tholeiite to make the calcalkaline suite. On the other hand, ferrotrachytic magmas erupted mainly late in the sequence, during magmatic waning and after significant basaltification of the crust

    Crystallization and welding variations in a widespread ignimbrite sheet; the Rattlesnake Tuff, eastern Oregon, USA

    No full text
    The 7.05 Ma Rattlesnake Tuff covers ca. 9000 km², but the reconstructed original coverage was between 30000 and 40000 km². Thicknesses are remarkably uniform, ranging between 15 and 30 m for the most complete sections. Only 13% of the area is covered with tuff thicker than 30 m, to a maximum of 70 m. The present day estimated tuff volume is 130 km³ and the reconstructed magma volume of the outflow is 280 km³ DRE (dense rock equivalent). The source area of the tuff is inferred to be in the western Harney Basin, near the center of the tuff distribution, based mainly on a radial exponential decrease in average pumice size, and is consistent with a general radial decrease in welding and degree of post-emplacement crystallization. Rheomorphic tuff is found to a radius of 40–60 km from the inferred source. Four facies of welding and four of post-emplacement crystallization are distinguishable. They are: non-welded, incipiently welded, partially welded and densely welded zones; and vapor phase, pervasively devitrified, spherulite and lithophysae zones. The vapor phase, pervasively devitrified and lithophysae zones are divided into macroscopically distinguishable subzones. At constant thickness (20±3 m), and over a distance of 1–3 km, nonrheomorphic sections can cary between two extremes: (a) entirely vitric sections grading from nonwelded to incipiently welded; and (b) highly zoned sections. Highly zoned sections have a basal non- to densely welded vitric tuff overlain by a spherulite zone that grades upward through a lithophysae-dominated zone to a zone of pervasive devitrification, which, in turn, is overlain by a zone of vapor-phase crystallization and is capped by partially welded vitric tuff. A three-dimensional welding and crystallization model has been developed based on integrating local and regional variations of 85 measured sections. Strong local variations are interpreted to be the result of threshold-governed welding and crystallization controlled by residence time above a critical temperature, which is achieved through differences in thickness and accumulation rate

    Compositional Gradients and Gaps in High-silica Rhyolites of the Rattlesnake Tuff, Oregon

    No full text
    The Rattlesnake Tuff of eastern Oregon comprises >99% of high-silica rhyolite glass shards and pumices representing ∼280 km³ of magma. Glassy, crystal-poor, high-silica rhyolite pumices and glass shards cluster in five chemical groups that range in color from white to dark gray with increasing Fe concentration. Compositional clusters are defined by Fe, Ti, LREE, Ba, Eu, Rb, Zr, Hf, Ta, and Th. Progressive changes with increasing degree of evolution of the magma occur in modal mineralogy, mineral composition, and partition coefficients. Partition coefficients are reported for alkali feldspar, clinopyroxene, and titanomagnetite. Models of modal crystal fractionation, assimilation, successive partial melting, and mixing of end members cannot account for the chemical variations among rhyolite compositions. On the other hand, ∼50% fractionation of observed phenocryst compositions in non-modal proportions agrees with chemical variations among rhyolite compositions. Such non-modal fractionation might occur along the roof and margins of a magma chamber and would yield compositions of removed solids ranging from syenitic to granitic. A differentiation sequence is proposed by which each more evolved composition is derived from the previous, less evolved liquid by fractionation and accumulation, occurring mainly along the roof of a slab-like magma chamber. As a layer of derivative magma reaches a critical thickness, a new layer is formed, generating a compositionally and density stratified magma chamber

    Segmentation of the Cascade Arc as indicated by Sr and Nd isotopic variation among diverse primitive basalts.

    No full text
    Abstract In the central Oregon Cascades, extension of the arc has promoted eruption of primitive basalts that are of three types, calcalkaline (CAB), low K tholeiitic (LKT) and rare absarokitic (ABS) in the forearc. Based on a comparison with the distribution of primitive magma types and their 87 Sr/ 86 Sr and 143 Nd/ 144 Nd isotopic signature in the Cascades, we divide the arc into four segments that correspond to distinct tectonic settings and reflect mantle domains and melting regimes at depth. The segments are: 1) the North Segment from Mt. Meager to Glacier Peak; 2) the Columbia Segment from Mt. Rainier to Mt. Jefferson; 3) the Central Segment from the Three Sisters to Medicine Lake, and 4) the South Segment from Mt. Shasta to Lassen Peak. Calcalkaline basalts (CABs) are found all along the arc axis and are produced by fluxing of variable mantle domains by subduction-derived fluid. In the South Segment, the degree of fluxing and melting is greatest as indicated by high 87 Sr/ 86 Sr and Ba/ Ce of CABs relative to other types of ambient basalt and is consistent with the greater abundance of high-Mg basaltic andesite, relative to other segments. High flux and abundant melt is enhanced by the presence of a slab window and subduction of the altered and deformed Gorda Plate. In the northern part of the arc, small degrees of flux melting are coupled with the presence of an enriched mantle component to yield abundant high-field strength element-enriched (HFSE-rich) basalts. Extension and higher heat flow favors the production of abundant low potassium tholeiites LKT in the Central Segment. A distinct shift in 87 Sr/ 86 Sr of low LKTs occurs between the Columbia and Central Segments (0.7028 vs. 0.7034, respectively), which we interpret as juxtaposition of mantle of accreted oceanic terranes, including the enriched large igneous province Siletz Terrane, with encroaching mantle related to the adjacent Basin and Range Province. The latter, although depleted, carries an enrichment signature from an older subduction history. The segmentation presented here for the Cascade Arc provides a framework for testing the relative influences of the downgoing slab, mantle heterogeneity, and the tectonics and make up of the upper place
    corecore