12 research outputs found

    Exoplanet mass estimation for a sample of targets for the <i>Ariel</i> mission

    Get PDF
    Ariel’s ambitious goal to survey a quarter of known exoplanets will transform our knowledge of planetary atmospheres. Masses measured directly with the radial velocity technique are essential for well determined planetary bulk properties. Radial velocity masses will provide important checks of masses derived from atmospheric fits or alternatively can be treated as a fixed input parameter to reduce possible degeneracies in atmospheric retrievals. We quantify the impact of stellar activity on planet mass recovery for the Ariel mission sample using Sun-like spot models scaled for active stars combined with other noise sources. Planets with necessarily well-determined ephemerides will be selected for characterisation with Ariel. With this prior requirement, we simulate the derived planet mass precision as a function of the number of observations for a prospective sample of Ariel targets. We find that quadrature sampling can significantly reduce the time commitment required for follow-up RVs, and is most effective when the planetary RV signature is larger than the RV noise. For a typical radial velocity instrument operating on a 4 m class telescope and achieving 1 m s−1 precision, between ~17% and ~ 37% of the time commitment is spent on the 7% of planets with mass Mp ⊕. In many low activity cases, the time required is limited by asteroseismic and photon noise. For low mass or faint systems, we can recover masses with the same precision up to ~3 times more quickly with an instrumental precision of ~10 cm s−1

    A temperate rocky super-Earth transiting a nearby cool star

    Get PDF
    International audienceM dwarf stars, which have masses less than 60 per cent that of the Sun, make up 75 per cent of the population of the stars in the Galaxy. The atmospheres of orbiting Earth-sized planets are observationally accessible via transmission spectroscopy when the planets pass in front of these stars. Statistical results suggest that the nearest transiting Earth-sized planet in the liquid-water, habitable zone of an M dwarf star is probably around 10.5 parsecs away. A temperate planet has been discovered orbiting Proxima Centauri, the closest M dwarf, but it probably does not transit and its true mass is unknown. Seven Earth-sized planets transit the very low-mass star TRAPPIST-1, which is 12 parsecs away, but their masses and, particularly, their densities are poorly constrained. Here we report observations of LHS 1140b, a planet with a radius of 1.4 Earth radii transiting a small, cool star (LHS 1140) 12 parsecs away. We measure the mass of the planet to be 6.6 times that of Earth, consistent with a rocky bulk composition. LHS 1140b receives an insolation of 0.46 times that of Earth, placing it within the liquid-water, habitable zone. With 90 per cent confidence, we place an upper limit on the orbital eccentricity of 0.29. The circular orbit is unlikely to be the result of tides and therefore was probably present at formation. Given its large surface gravity and cool insolation, the planet may have retained its atmosphere despite the greater luminosity (compared to the present-day) of its host star in its youth. Because LHS 1140 is nearby, telescopes currently under construction might be able to search for specific atmospheric gases in the future

    Cross-Disorder Genome-Wide Analyses Suggest a Complex Genetic Relationship Between Tourette's Syndrome and OCD

    No full text

    Protein degradation pathways in Parkinson’s disease: curse or blessing

    No full text
    corecore