51 research outputs found

    Clinical outcomes stratified by baseline functional class after initial combination therapy for pulmonary arterial hypertension

    Get PDF
    Background Initial combination therapy with ambrisentan and tadalafil reduced the risk of clinical failure events for treatment-naïve participants with pulmonary arterial hypertension (PAH) as compared to monotherapy. Previous studies in PAH have demonstrated greater treatment benefits in more symptomatic participants. Methods AMBITION was an event-driven, double-blind study in which participants were randomized 2:1:1 to once-daily initial combination therapy with ambrisentan 10 mg plus tadalafil 40 mg, ambrisentan 10 mg plus placebo, or tadalafil 40 mg plus placebo. In this pre-specified subgroup analysis, we compared the efficacy data between those with functional class (FC) II vs. FC III symptoms at baseline. Results This analysis included 500 participants in the previously defined primary analysis set (n = 155 FC II, n = 345 FC III). Comparing combination therapy to pooled monotherapy, the risk of clinical failure events was reduced by 79% (hazard ratio, 0.21 [95% confidence interval: 0.071, 0.63]) for FC II patients and 42% (hazard ratio, 0.58 [95% confidence interval: 0.39, 0.86]) for FC III patients. In a post-hoc analysis, the risk of first hospitalization for worsening PAH was also reduced by combination therapy, particularly for FC II patients (0 combination vs. 11 [14%] pooled monotherapy). Adverse events were frequent but comparable between the subgroups. Conclusions Treatment benefit from initial combination therapy appeared at least as great for FC II as for FC III participants. Hospitalizations for worsening PAH were not observed in FC II participants assigned to combination. The present data support an initial combination strategy for newly diagnosed patients even when symptoms are less severe

    Plant defense resistance in natural enemies of a specialist insect herbivore

    Get PDF
    Plants defend themselves against herbivores through the production of toxic and deterrent metabolites. Adapted herbivores can tolerate and sometimes sequester these metabolites, allowing them to feed on defended plants and become toxic to their own enemies. Can herbivore natural enemies overcome sequestered plant defense metabolites to prey on adapted herbivores? To address this question, we studied how entomopathogenic nematodes cope with benzoxazinoid defense metabolites that are produced by grasses and sequestered by a specialist maize herbivore, the western corn rootworm. We find that nematodes from US maize fields in regions in which the western corn rootworm was present over the last 50 y are behaviorally and metabolically resistant to sequestered benzoxazinoids and more infective toward the western corn rootworm than nematodes from other parts of the world. Exposure of a benzoxazinoid-susceptible nematode strain to the western corn rootworm for 5 generations results in higher behavioral and metabolic resistance and benzoxazinoid-dependent infectivity toward the western corn rootworm. Thus, herbivores that are exposed to a plant defense sequestering herbivore can evolve both behavioral and metabolic resistance to plant defense metabolites, and these traits are associated with higher infectivity toward a defense sequestering herbivore. We conclude that plant defense metabolites that are transferred through adapted herbivores may result in the evolution of resistance in herbivore natural enemies. Our study also identifies plant defense resistance as a potential target for the improvement of biological control agents

    Multicenter standardization of phase-resolved functional lung MRI in patients with suspected chronic thromboembolic pulmonary hypertension

    Get PDF
    Background Detection of pulmonary perfusion defects is the recommended approach for diagnosing chronic thromboembolic pulmonary hypertension (CTEPH). This is currently achieved in a clinical setting using scintigraphy. Phase-resolved functional lung (PREFUL) magnetic resonance imaging (MRI) is an alternative technique for evaluating regional ventilation and perfusion without the use of ionizing radiation or contrast media. Purpose To assess the feasibility and image quality of PREFUL-MRI in a multicenter setting in suspected CTEPH. Study Type This is a prospective cohort sub-study. Population Forty-five patients (64 ± 16 years old) with suspected CTEPH from nine study centers. Field Strength/Sequence 1.5 T and 3 T/2D spoiled gradient echo/bSSFP/T2 HASTE/3D MR angiography (TWIST). Assessment Lung signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were compared between study centers with different MRI machines. The contrast between normally and poorly perfused lung areas was examined on PREFUL images. The perfusion defect percentage calculated using PREFUL-MRI (QDPPREFUL) was compared to QDP from the established dynamic contrast-enhanced MRI technique (QDPDCE). Furthermore, QDPPREFUL was compared between a patient subgroup with confirmed CTEPH or chronic thromboembolic disease (CTED) to other clinical subgroups. Statistical Tests t-Test, one-way analysis of variance (ANOVA), Pearson's correlation. Significance level was 5%. Results Significant differences in lung SNR and CNR were present between study centers. However, PREFUL perfusion images showed a significant contrast between normally and poorly perfused lung areas (mean delta of normalized perfusion −4.2% SD 3.3) with no differences between study sites (ANOVA: P = 0.065). QDPPREFUL was significantly correlated with QDPDCE (r = 0.66), and was significantly higher in 18 patients with confirmed CTEPH or CTED (57.9 ± 12.2%) compared to subgroups with other causes of PH or with excluded PH (in total 27 patients with mean ± SD QDPPREFUL = 33.9 ± 17.2%). Data Conclusion PREFUL-MRI could be considered as a non-invasive method for imaging regional lung perfusion in multicenter studies. Level of Evidence 3 Technical Efficacy Stage

    Differential Requirements of Two recA Mutants for Constitutive SOS Expression in Escherichia coli K-12

    Get PDF
    Background Repairing DNA damage begins with its detection and is often followed by elicitation of a cellular response. In E. coli, RecA polymerizes on ssDNA produced after DNA damage and induces the SOS Response. The RecA-DNA filament is an allosteric effector of LexA auto-proteolysis. LexA is the repressor of the SOS Response. Not all RecA-DNA filaments, however, lead to an SOS Response. Certain recA mutants express the SOS Response (recAC) in the absence of external DNA damage in log phase cells. Methodology/Principal Findings Genetic analysis of two recAC mutants was used to determine the mechanism of constitutive SOS (SOSC) expression in a population of log phase cells using fluorescence of single cells carrying an SOS reporter system (sulAp-gfp). SOSC expression in recA4142 mutants was dependent on its initial level of transcription, recBCD, recFOR, recX, dinI, xthA and the type of medium in which the cells were grown. SOSC expression in recA730 mutants was affected by none of the mutations or conditions tested above. Conclusions/Significance It is concluded that not all recAC alleles cause SOSC expression by the same mechanism. It is hypothesized that RecA4142 is loaded on to a double-strand end of DNA and that the RecA filament is stabilized by the presence of DinI and destabilized by RecX. RecFOR regulate the activity of RecX to destabilize the RecA filament. RecA730 causes SOSC expression by binding to ssDNA in a mechanism yet to be determined
    corecore