4 research outputs found

    Probing the Constituent Structure of Black Holes

    Get PDF
    Based on recent ideas, we propose a framework for the description of black holes in terms of constituent graviton degrees of freedom. Within this formalism a large black hole can be understood as a bound state of N longitudinal gravitons. In this context black holes are similar to baryonic bound states in quantum chromodynamics which are described by fundamental quark degrees of freedom. As a quantitative tool we employ a quantum bound state description originally developed in QCD that allows to consider black holes in a relativistic Hartree like framework. As an application of our framework we calculate the cross section for scattering processes between graviton emitters outside of a Schwarzschild black hole and absorbers in its interior, that is gravitons. We show that these scatterings allow to directly extract structural observables such as the momentum distribution of black hole constituents.Comment: Extended version, accepted for publication in JHE

    Towards a Quantum Theory of Solitons

    Get PDF
    We formulate a quantum coherent state picture for topological and non-topological solitons. We recognize that the topological charge arises from the infinite occupation number of zero momentum quanta flowing in one direction. Thus, the Noether charge of microscopic constituents gives rise to a topological charge in the macroscopic description. This fact explains the conservation of topological charge from the basic properties of coherent states. It also shows that no such conservation exists for non-topological solitons, which have finite mean occupation number. Consequently, they can have an exponentially-small but non-zero overlap with the vacuum, leading to vacuum instability. This amplitude can be interpreted as a coherent state description of false vacuum decay. Next we show that we can represent topological solitons as a convolution of two sectors that carry information about topology and energy separately, which makes their difference very transparent. Finally, we show how interaction among the solitons can be understood from basic properties of quantum coherent states.Comment: Matches version published at Nuclear Physics
    corecore