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1 Introduction

In general relativity, the complete gravitational collapse of a spherical symmetric body

results in a Schwarzschild black hole. Based on the asymptotic flatness of the Schwarzschild

solution, the black hole is fully characterized by the total mass. This allows to interprete

the Schwarzschild metric in terms of the exterior gravitational field of an isolated body.

Duff [1] showed that the Schwarzschild solution can be obtained by resumming infinitely

many tree-level scattering processes involving weakly coupled gravitons and the black hole

as an external source on Minkowski space-time. Therefore, the exterior of a Schwarzschild

black hole admits both, a geometrical and a quantum mechanical description based on

the S-matrix.

In our opinion, the luxury of friendly coexisting descriptions ends at the event horizon

of the black hole. The reason can be understood as follows: the standard semi-classical

treatment of Hawking radiation inevitably leads to non-unitary time evolution in the sense

that pure states evolve into mixtures. This is known as the information paradox which is

true for arbitrarily large black holes (excluding the possibility of remnants). In particular,

this suggests that a resolution to this problem could be insensitive to the details of a UV

completion of gravity. In contrast any sensible effective quantum field theory on flat space-

time should preserve information by default. Let us stress already at this point that we

do not claim that quantum field theory (QFT) on curved space-time is not valid. Rather

it describes an idealized semi-classical situation which might miss quantum effects which

could lead to purification of Hawking radiation.
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In this article, we want to explore the possibility that QFT on flat space-time is

fundamental, even for the description of black hole interiors.

The situation is somewhat analogous to the status quo of the proton around the advent

of quantum chromodynamics. The mass, spin and electrical charge of the proton were

known. Mass and spin are related to the Casimir invariants of the Poincare group, i.e. to

the isometries of Minkowski space-time. Low-energy effective model building allowed to

study hadron reactions at energies sufficiently low to neglect the internal structure of

the participating hadrons. Protons and hadrons in general, however, do not enter in the

Hamiltonian of quantum chromodynamics, albeit they are part of its spectrum, just not

as elementary degrees of freedom, but as non-perturbative bound states. Understanding

the internal structure of hadrons in terms of its (asymptotically) perturbative constituents

becomes a formidable problem.

The charge radius of protons serves as a working analogue to the Schwarzschild ra-

dius. The charge radius sets the average length scale for confining color within protons.

Hadrons in general cannot leak color, and chromodynamics can only be studied if probes

are employed that can resolve length scales smaller than the charge radius. This can be

achieved experimentally in deep inelastic scattering processes involving leptons emitting

virtual photons and protons absorbing them. The only information observed is the recoil

of the emitter. This information suffices to reconstruct the proton interior in terms of

so-called structure functions. Outside the confining proton, questions can be answered

using perturbation theory. Once the virtual photon has been absorbed by the proton, it

probes the interior of a strong bound state. The interior structure of the proton depends on

non-perturbative features of quantum chromodynamics, and cannot be fully described by

means of perturbation theory. While asymptotic freedom allows a perturbative description

for individual interactions at sufficiently small distances, confinement is a non-perturbative

effect. It is also important to mention that confinement is a priori not due to collective

effects, where all constituents create an effective potential for each single constituent that

would be responsible for confinement. Nevertheless, Shifman et al. [2, 3] showed that ques-

tions pertaining to the internal structure of hadronic bound states can be formulated in a

mean-field language, and the formulation is as close as it gets to a relativistic Hartree-like

approximation. Shifman et al. postulated the existence of a non-perturbative ground state

that supports the creation of bound states when an auxiliary current operates on it. The

main difference to the perturbative vacuum is that it allows for quarks and gluons to con-

dense. In turn, condensates of quarks and gluons parametrize the a priori unknown ground

state. This way, non-perturbative effects are mapped to the details of this ground state

such that generic observables factorize in perturbative (calculable) and non-perturbative

(parametrized) pieces.

The main question we wish to pursue in this article is whether the interior of Schwarz-

schild black holes admit a similar quantum bound state description. If a quantum mechan-

ical description of the black hole interior is at all feasible, it has to involve non-perturbative

aspects of the quantum theory. And these aspects need to quantify the difference for a free

field to evolve in the exterior or the interior of a Schwarzschild black hole. The very fact

that the evolution is different motivates a quantum bound state description of the black

hole interior.
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Recently a description of black holes as quantum bound states of N weakly interacting

constituents has been suggested by Dvali and Gomez [4, 5]. At first sight, the complemen-

tary description suggested here seems difficult to achieve, because black holes are bound

states of N � 1 constituents. However, ’t Hooft showed that large-N systems can be

blessed with simple scaling laws, giving rise to e.g. planar dominance [6]. In his original

work, ’t Hooft considered the case of a SU(N) gauge theory for N →∞. Witten considered

heavy baryons in this theory, which consist of N constituent quarks in the fundamental

representation of the gauge group, assuming that SU(∞) is a confining gauge theory [7].

He showed that a diagrammatic approach to bound state properties (beyond the

parton-level description) seems to indicate a bad large-N limit. This lead to the observation

that the large-N behavior of this theory is only sensible provided the baryon mass scales as

MB ∝ N . In extending these kinematical considerations towards a dynamical description,

Witten employed a Hartree approximation and restricted his work to heavy baryons.

Notice that the assumption of confinement in SU(∞) was needed to ensure a proper

bound state spectrum in terms of color singlet hadrons. In general, the microscopic origin

of the bound state spectrum, however, is not related to confinement or asymptotic freedom

in the UV. In particular, the use of mean-field techniques does not depend on the precise

nature of a large-N system under consideration. Consider for example an atom with

many electrons. In this case, constituents interact according to quantum electrodynamics.

Therefore, no confining mechanism in such systems is at work. Nevertheless, as soon as

the number of bound state constituents is large enough, mean-field techniques based on

the Hartree ansatz can be succesfully employed.

Witten [7] demonstrated that the large-N nature of the bound states lead to enormous

simplifications as compared to real QCD. The reason for this is the emergence of a new

expansion parameter, 1/N , i.e. the inverse number of bound state constituents. As ex-

plained before, the power of the large-N logic is not restricted to asymptotically free gauge

theories. In fact, for any generic system composed of a large number N � 1 of individually

weakly coupled quanta an expansion in 1/N can be employed. Another important example

is given by Bose-Einstein condensates consisting of N bosons. In that case the Bogoliubov

approximation amounts to a truncation of a 1/N expansion at leading order. Thus, the

simplifications rooting in the nature of large-N systems seem to be generic, no matter what

the underlying reasoning of bound state formation or condensation is. The reason for this

property can eventually be traced back to fact that all these systems allow for a mean

field description.

In practice, such a description is feasible technically in non-relativistic systems. How-

ever, as far as relativistic systems are concerned, there has not been much progress. An

implementation of the Hartree idea in such a situation, however, is of fundamental im-

portance. Applications include for example, large-N baryons consisting of light quarks or

black holes in the picture of [4]. In principle a mean-field approach is given in terms of

a consistent truncation of the Schwinger-Dyson equations. Technically, finding solutions

to the truncated system, is in general a very demanding task. Therefore, it is desirable,

to find a different implementation of the mean-field idea in relativistic field theory. At a

practical level, this could, for example, amount to a parametrization of complicated mi-
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croscopic phenomena in terms of phenomenological parameters. As such, these parameters

can be effectively interpreted as coarse-grained observables.

Actually, first steps in that direction were proposed in [8]. There a general framework

addressing relativistic mean-field questions involving bound states was presented and de-

veloped. For example, in the context of gravitational bound states, the only input of the

ideas of [4] is that black holes might be understood as large-N bound states of longitu-

dinal gravitons. Scaling relations or other results based on the estimates given there are

not assumed in the formalism of [8] at any point. On the contrary, the field theoretical

apparatus presented in this work explicitly allows to derive such scalings.

The framework employs weakly coupled constituents immersed in a complicated ground

state filled with constituent condensates. These condensates parametrize the strong col-

lective effects discussed above and correspond to normal-ordered contributions appearing

when using Wick’s theorem. Thus, the condensates create an effective coarse-grained po-

tential in which individual particles propagate. This construction is similar to the one used

in sum rule calculations in non-perturbative QCD [2, 3] as discussed above. The difference

is that the strong effects in QCD are due to confinement while in our case the ground state

itself represents a mean field source, suggesting a relativistic Hartree framework to address

non-perturbative questions.

As mentioned before the techniques developed in [8] are completely general and ap-

ply to both, gravitational and non-gravitational relativistic bound states consisting of

many quanta.

Since we are interested in bound state properties of Schwarzschild space-times, we will

however focus on spherically symmetric purely gravitating sources in this article. In what

follows black holes are treated on the same footing as other gravitating bound states. The

only difference is that the radius of the black hole is equal to the Schwarzschild radius.

Questions concerning thermality and entropy will be addressed in future work.1

A priori, quantum bound states representing black holes are unknown. Nevertheless,

structural information about black holes understood as graviton bound states can be ex-

tracted from kinematical states that store quantum numbers and isometries pertaining to

black holes. This is a common procedure in quantum chromodynamics where, for example,

the pion decay constant is defined as the overlap between a two-quark state and the a priori

unknown pion state [2, 3].

Our aim is to provide a quantitative formulation of these ideas. Having developed

the theoretical framework in [8], we will focus on applications within S-matrix theory in

this article.

Black hole interiors, considered as quantum compositions of many constituents, can be

probed using virtual gravitons. Albeit the probes are absorbed by black hole constituents

inside of the black hole, information about the constituent distribution inside the bound

state can be extracted from the probe emitter far away from the black hole.

In this article, we use this framework to construct observables like cross-sections. Fur-

1The construction described in section 2 could, for example, be generalized to density operators describ-

ing the statistical properties of bound states.
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thermore, we study scattering processes that resolve the constituent structure of quantum

bound states associated with black holes. In order to resolve the constituent composition

of the black hole interior, a virtual graviton has to be emitted nearby the black hole hori-

zon and be absorbed by the black hole. In such a inelastic scattering process, the horizon

is the boundary separating the perturbative vacuum in the black hole exterior from the

non-perturbative ground state in the interior. The information concerning the constituent

distribution inside the black hole can be extracted from the scattering angle between the

emitter asymptotics. This would allow for a complementary description of the black hole

interior based on observables which can be measured by an outside observer.

In section 2 the auxiliary current description is presented as the key concept allowing

to represent quantum bound states by kinematical states which carry structural informa-

tion. After reviewing the general construction based on [8] we will specialize our reasoning

to spherically symmetric gravitating bound states. In section 3 to 7 we present our com-

putation of the cross-section of scattering of scalars on the black hole. We show that the

result can be written in terms of distribution functions of gravitons inside the black hole.

In particular, section 3 is devoted to the description of black holes as absorbers of vir-

tual gravitons. This description is promoted to absorption processes compatible with the

S-matrix framework in section 4. Section 5 offers an interpretation of these absorption

processes in terms of constituent observables, which in turn offers the possibility to extract

black hole constituent observables from scattering experiments. Section 6 complements

this analysis by uncovering the analytical structure underlying the absorption of virtual

messengers by black holes. In section 7 we present the graviton distribution at the parton

level. We want to stress, that our aim in this article is to show that cross sections can be

described in terms of constituent quanta. Practically, this implies that the cross section

is parametrized by a non-perturbative quantity, the graviton distribution function. This

function should be measured in a real experiment. Predictivity of our techniques would

then follow from the renormalization group evolution of that distribution function. This

is exactly the same as the analogous situation in QCD. The question of renormalization

group flows, however, is left for future work.

2 Auxiliary current description

Within the perturbative framework suitable for describing scattering processes there is

no dynamical constituent representation of bound states based on elementary degrees of

freedom. This, however, does not exclude a sensible representation of a bound state.

At the kinematical level all quantum states are identified by their quantum num-

bers. These quantum numbers should be in accordance with the intrinsic symmetries at

work (such as gauge symmetries), and with the isometries characterising bound states

in Minkowski space-time. Furthermore, the state has to be characterised according to

isometries of Minkowski (Casimir operators of Minkowski). Including all these quantum

numbers, collectively denoted as L, leads to a complete kinematic characterisation of the

bound state in question. Let us, for example, consider a proton. Kinematically a proton

must be a colour neutral state with the correct quark content to ensure the correct electric
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charge and isospin corresponding to gauge quantum numbers. A further characterisation

of the state is given by the mass and spin which are the eigenvalues of the corresponding

Casimir operators of Minkowski. In the following, this construction will be demonstrated

for the Schwarzschild case.

We assume a unique non-perturbative ground state |Ω〉 which supports all quantum

numbers L in the bound state spectrum. In particular, bound states can be created using

appropriate auxiliary currents J acting on |Ω〉. These currents should contain the field

content associated with the bound state at hand. For example the current for the ρ-meson

is given by J µρ = 1/2(ūγµu− d̄γµd) [2, 3], where u and d are the up and down quark fields,

respectively. Notice that this current has the correct isospin, charge and colour quantum

numbers to represent a ρ-meson. This ensures that the overlap with the true state of the

ρ-meson is non-vanishing, thus allowing to express the true state |ρ〉 in terms of J µρ . In

our case the current should be composed out of N gravitons. We will come back to the

explicit form of the current later in this section.

First we derive the representation of a generic bound state |B〉 in Minkowski space-time

with quantum numbers encoded in J . For that purpose consider

〈Ω|J (x)|B〉 =

∫
d4P

(2π)4
B(P,Q)e−iPx 〈Ω|J (0)|P 〉︸ ︷︷ ︸

ΓB

. (2.1)

Here we inserted a complete set of momentum eigenstates |P 〉 and used translational

invariance of the vacuum state. Note that the matrix element on the right hand side

defines a non-trivial decay constant ΓB. As mentioned before this construction is analogous

to definitions of decay constants in the framework of QCD [2, 3]. B(P,Q) is the wave

function of the bound state in momentum space carrying information about possible gauge

quantum numbers and isometries encoded in Q. Thus we identify the complete set of

quantum numbers L = {P,Q}.
Expanding |B〉 and J (x)|Ω〉 separately in momentum eigenstates and using the defini-

tion of ΓB we arrive at the auxiliary current representation of an arbitrary quantum state2

and, in particular, a bound state

|B〉 =
1

ΓB

∫
d4P B(P,Q)

∫
d4x

(2π)4
eiP ·xJ (x)|Ω〉 . (2.2)

Notice that B(P,Q) localizes the information encoded in J in |B〉. It is intrinsically

non-perturbative and can be related to the distribution of gravitons inside the bound state

as we will discuss in more detail later.

Since in our construction spherically symmetric, gravitating sources are understood

as bound states on flat space-time, also here one characterisation is given by the Casimir

operators of Minkowski P 2 = −M2
B. Thus our generic derivation applies here as well.3

2Later, for example, we will explain how this construction reduces to the Lehmann-Symanzik-

Zimmermann formula in the context of perturbative S-matrix theory.
3Note that on-shell we have P 2 = −M2

B. Thus, four-dimensional momentum integration is only chosen

for convenience. In particular, B(P,Q) = δ(1)(P 2 +M2
B)B̂(P,Q) with B̂(P,Q) the on-shell wave function of

the state |B〉.
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Here MB is the bound state’s mass. Since we consider Schwarzschild black holes there are

no gauge quantum numbers associated to it. Therefore, in this discussion we do not need

to take gauge quantum numbers into account.4

Let us know specify the current J for the question at hand. The current J carries

isometry information of black hole quantum bound states appropriate for the kinematical

description. Note that these isometries are not due to any geometrical concept. Instead,

they are a consequence of the explicit breaking of certain Lorentz symmetries in the presence

of bound states.

Black holes can be modelled using bound states of N gravitons by means of the fol-

lowing local, composite operator,

J (x) =M(h, . . . , h︸ ︷︷ ︸
N

)(x) . (2.3)

HereM denotes a Lorentz covariant tensor coupling N gravitons h in accordance with the

bound state isometries archived in Q. For simplicity, we displayed only graviton couplings,

but other degrees of freedom can be included in the current description. In fact, this will

be necessary when gravitons are coupled to other fields. The bound state isometries are

represented via their associated symmetry generator K. In order for the state |B〉 to respect

them, they are realised as local symmetries of the currents, i.e. [J ,K] = 0. This implies

the invariance of the state J (x)|Ω〉 under the action of K.

The local symmetry condition leads to a differential equation determining the space-

time dependence of the current. In our case, the collection of isometries includes generators

corresponding to temporal homogeneity and spatial isotropy. We find h = f(r) with r

denoting the Euclidean distance, so J = M(h, . . . , h)(r). The coupling tensor M is not

further constrained. The simplest auxilliary current is given by J = (trh)N (r). For

notational simplicity we represent the bound state gravitons by massless scalars, J = ΦN .

This is completely justified at the partonic level, where gravitons are non-interacting. The

reader is referred to [8] for more details concerning the choice of the current at this level

of accuracy.

Any Observable O associated with black hole structure is subject to the isometries

stored in Q. Using (2.2), Ward’s identity leads to

0 = 〈B|∂µjµ|B〉 = 〈B|δO|B〉 = δ〈B|O|B〉. (2.4)

Here, j denotes a conserved current corresponding to an isometry (this should not be

confused with the auxiliary current J ). In practice, (2.4) implies that observables can

be calculated in a fully Lorentz covariant way and it suffices to impose the symmetry

constraints in the end.

Although the auxiliary current description is transparent, it is worth appreciating its

simplicity when applied to free states |χ〉 = |k,Q〉:

a†(k,Q)|0〉 = Γ −1
χ

∫
d3x

(2π)3
eik·xJ (x)|Ω〉 , (2.5)

4These could be implemented easily, however. In the case of electrically charged black holes one could

choose the current in such a way that it contains U(1) fields as well as gravitons.
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where k is on-shell, k is the particles three momentum and |0〉 denotes the perturbative

vacuum state. In the auxiliary current description, excitations of the perturbative vacuum

are generated by acting with the auxiliary current on the perturbative vacuum on a spatial

slice at an arbitrary time. The current simply reduces to the field operator creating a

scattering state from the vacuum. For example, J (x) = χ(x) for a single particle scalar

scattering state. Since k is on-shell, an ingoing scattering state is given by

|k,Q, in〉 =
2π

iΓχk0(k)

∫
d4x

(2π)4
eik·xD(x)J (x)|Ω〉 , (2.6)

with D(x) denoting the equation of motion operator associated with |χ〉. Note that in (2.6)

a boundary term, as well as a term that would lead to a disconnected contribution in the

scattering matrix have been dropped.

Hence, the auxiliary current description reduces to the famous Lehmann-Symanzik-

Zimmermann reduction formula when applied to scattering states. This suggests a unified

framework for scattering processes involving constituent and asymptotic states.

3 Black hole structure

In this section the non-geometrical concept of black hole structure will be introduced.

Quantum field theory allows for two distinct source types, external and internal sources,

referring to the absence and presence of sources in the physical Hilbert space, respec-

tively. They are, however, not on equal footing, since external sources approximate a more

fundamental description solely involving internal sources. Clearly, an external source is

structureless, while small-scale structure can be assigned to an internal composite source.

Considering black holes as external sources, i.e. not resolved in a physical Hilbert space,

small-scale structure of their interior is a void concept. Scattering experiments allow to

extract observables localized outside of the black hole. In particular, the 1/r-potential

can be recovered for r > rg, where rg ≡ 2MB/M
2
P is the Schwarzschild radius, with MP

denoting the Planck mass and MB the black hole mass. Furthermore, resummation of tree

scattering processes sourced by the external black hole give rise to geodesic motion in the

respective Schwarzschild background. As explained before this allows for reinterpretation

of geometry as being emergent from an S-matrix defined on flat space-time.

Treating black holes as internal sources anchored in the physical Hilbert space, their

interior quantum structure can be resolved by employing probes of sufficient virtuality,

−q2 > r −2
g . This can be described in a weakly coupled field theory provided −q2 < M 2

P

holds. Notice, that these ideas depart from the semi-classical point of view. There, the

existence of a horizon prohibits an observer outside of the black hole to get any information

about the internal structure of the system. As explained before, the geometrical concept,

is not fundamental within our approach. Rather geometry and thus the existence of a

horizon should be understood as effective phenomena. On the microscopic level, however,

this description should break down and a resolution of the bound state becomes possible

for an outside observer.

– 8 –
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Figure 1. Feynman diagram for the scattering of a scalar on a black hole bound state at tree level.

The wiggly line corresponds to the exchange of a virtual graviton. On the right hand side, the

corresponding absorption is resolved into the microscopic constituents spectating and participating

in the scatter process.

For simplicity, consider an ingoing scalar Φ outside of the black hole emitting a graviton

with appropriate virtuality, which subsequently gets absorbed by another scalar in the black

hole’s interior. This process is encoded in the linearized Einstein-Hilbert action coupled to

the energy-momentum tensor of a massless scalar, T = dΦ⊗ dΦ− (dΦ, dΦ)η/2:

S =

∫
d4x

[
1

2
hµνε

µν
αβh

αβ +
1

MP
hµνT µν

]
. (3.1)

Here εµναβ is the standard linearized kinetic operator of general relativity expanded

around flat space-time. Note that we can trust this effective action in the kinematic regime

discussed above.

Before truncating ingoing and outgoing emitter legs, the one-graviton exchange ampli-

tude for this process at tree level reads (figure 1)

a(2)(x1, x2) =
i2

M 4
P

∫
d4z1d4z2 Pµν(z1, z2;x1, x2)Nµν(z2),

where P contains all correlations with respect to the perturbative vacuum state |0〉, and

N carries local, non-perturbative information about the black hole quantum state |B〉:

Pµν = 〈0|TΦ(x2)Tαβ(z1)Φ(x1)|0〉 ∆αβµν(z1, z2) ,

Nµν = 〈B′| :Tµν : (z2)|B〉 . (3.2)

Here ∆ denotes the free graviton propagator, and |B′〉 is the black hole quantum state after

absorbing the graviton. Basically, P describes space-time events that originate outside the

bound state, while N is localised in its interior.

Using the auxiliary current description, and provided that the bound state wave func-

tion B(L) has a sufficiently compact support in L-space, the graviton absorption event can

be translated to the origin:

N (z2) ≈ e−i(P ′−P )·z2〈B′| :T : (0)|B〉 , (3.3)

with P ′ and P denoting the black hole momentum after and before the graviton absorption,

respectively, around which the corresponding wave function is peaked. The evaluation of

– 9 –
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P is straightforward. Truncating the ingoing and outgoing emitter legs, the one-graviton

exchange amplitude becomes

〈B′Φ′|BΦ〉(2) = −i(2π)4δ(k′ + P ′ − k − P ) α 2
g

×〈B′| :Tµν : (0)|B〉 ∆µναβ(k′ − k) Gαβρσ
k′ρkσ

k′0k0
, (3.4)

where the coupling αg ≡ 1/(4πM 2
P ) has been introduced, and Gαβρσ = ηβ(αηρ)σ − ηβσηαρ

is the Wheeler-DeWitt metric.

The total cross section σ(B′Φ′ ← BΦ) involves the absolute square of this amplitude

and an integration over all intermediate bound states in the spectrum of the theory. There-

fore, the differential cross section can be written as

k′0
dσ

d3k′
=

2

F(Φ)

∣∣αg∆(k′ − k)
∣∣2 Eαβµν(k, k′)Aαβµν(B; k, k′) . (3.5)

Here, F denotes the ingoing flux factor and ∆ the scalar part of the graviton propagator.

The emission tensor E captures the virtual graviton emission outside of the black hole,

and the absorption tensor A its subsequent absorption by a black hole constituent. The

emission tensor E ≡ Q⊗Q is build from

Qµν = 4π2 Πµναβ(k′ − k) Gαβρσ
k′ρkσ

k′0k0
, (3.6)

with the graviton polarisation tensor Πµναβ(q) ≡ πµ(απβ)ν − πµνπαβ , where πµν ≡ ηµν −
qµqν
q2

, and k, k′ the on-shell momenta of the ingoing and outgoing scalar emitter, respec-

tively. Graviton absorption is described as the energy momentum correlation of black

hole constituents:

A =
1

2π

∫
d4x e−i(k′−k)·x〈B|T (x)⊗ T (0)|B〉 . (3.7)

Clearly, A contains information about the black hole interior, which is not yet resolved in

terms of chronologically ordered subprocesses. For practical calculations, A will be related

to the corresponding time ordered amplitude in the next section.

4 Chronological ordering

Given that the graviton absorption tensor is not directly subject to time ordering, the

question arises whether it can be deconstructed into causal correlations. The method to

achieve this is very well-known in the context of scattering processes on bound states in

QCD and will be adapted to the problem at hand in the following discussion.

As a first step, let us relate A to a tensor built from T (x)∧T (0). Inserting a complete

set of physical states in between the energy-momentum tensors at x and 0 in (3.7), and

making good use of space-time translations, we arrive at

A =
1

2π

∫∑
B′

(2π)4δ(q + P − P ′)〈B|T (0)|B′〉〈B′|T (0)|B〉 ,

– 10 –
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with q ≡ k − k′, P and P ′ denoting the central momenta of wave-packets corresponding

to ingoing and outgoing black hole quantum states, respectively. Standard kinematical

arguments allow to replace (3.7) with

A =
1

2π

∫
d4x eiq·x〈B|[T (x), T (0)]|B〉 . (4.1)

The absorption tensor (4.1) is given by the absorptive part of the Compton-like am-

plitude C for the forward scattering of a virtual graviton off a black hole,

C = i

∫
d4xeiq·x〈B|T T (x)⊗ T (0)|B〉 . (4.2)

In order to see this, let us make the discontinuity of C manifest repeating the steps that

allowed to extract the kinematical support of A, leading to

C =

∫∑
B′

(2π)3δ(P′ −P− q)

P ′0 − P 0 − q0 − iε
〈B|T (0)|B′〉〈B′|T (0)|B〉 . (4.3)

Defining Abs ω−1 ≡ [(ω− iε)−1−(ω+iε)−1]/(2i), it follows that Abs(P ′0−P 0−q0− iε)−1 =

πδ(P ′0 − P 0 − q0) and hence,

πA(B; q) = Abs C(B; q) , (4.4)

which allows to deconstruct A in terms of chronologically ordered correlations.

5 Constituent representation of A

In this section we give a physical interpretation of the absorption tensor in terms of con-

stituent observables.

The time-ordered product of energy-momentum tensors in C gives rise to three con-

tributions: the first corresponds to maximal connectivity between the tensors, resulting in

a purely perturbative contribution void of any structural information. The second repre-

sents a disconnected contribution. Finally, the third contribution allows for perturbative

correlations between the energy-momentum tensors and, in addition, carries structural

information. Dropping the contributions void of structural information,

T Tαβ(x)Tµν(0) =
1

4
GabαβG

mn
µν Cbm(x) Oan(x, 0) ,

where C(x) ≡ 4〈0|T dΦ(x) ⊗ dΦ(0)|0〉 denotes the correlation with respect to the pertur-

bative vacuum,

C(x) = − 2

π2

x2η − 4x⊗ x
(x2)3

(5.1)

in free field theory, and O(x, 0) ≡ : dΦ(x) ⊗ dΦ(0) : is the bi-local operator allowing to

extract certain structural information when anchored in a quantum bound state.

– 11 –
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In order to extract local observables, O(x, 0) has to be expanded in a series of local

operators. In principal this amounts to a Laurent-series expansion of the corresponding

Green function. Let us first focus on its Taylor part:

Φ(x) = exp (x · ∂z) Φ(z)|z=0 . (5.2)

The ordinary partial derivative is appropriate in the free field theory context, otherwise

O(x, 0) requires a gauge invariant completion. Then,

O(x, 0) =
∞∑
j=0

1

j!
O[j](0) , (5.3)

with O[j](0) ≡ :(x · ∂z)jdΦ(0)⊗ dΦ(0): and [j] ≡ j + 4 denotes the mass dimension of the

local operator. Note that we suppressed the space-time point x appearing in the directional

derivative in order to stress the local character of the operator expansion.

The fast track to relate C to constituent observables is to evaluate O(x, 0) in a black

hole quantum state using the auxiliary current description. We find for the local operators

〈B|O[j](0)|B〉 = κ (x · P )j 〈B|Φ(r)Φ(0)|B〉P⊗P . (5.4)

Here, κ denotes a combinatoric factor. Note that a simple point-split regularisation has

been employed (r2 → 0). The operator appearing on the right hand side of (5.4) measures

the constituent number density.

Hence, the absorptive part of the forward virtual graviton scattering amplitude C or,

equivalently, the graviton absorption tensor A can be directly interpreted in terms of the

black hole constituent distribution.

6 Analytic properties of C

The Ward-Takahashi identity associated with the underlying gauge symmetry fixes the

tensorial structure θαβµν(q, P ) ≡ Πab
αβΠmn

µν ηbmPaPn of the amplitude C(q, P ) in accordance

with source conservation. The Laurent-series expansion of O(x, 0) in local operators gives

to leading order up to O(q · P/P 2)

C(q, P ) = 〈B|Φ(r)Φ(0)|B〉 θ(q, P )
−i

2π2

∞∑
j=−∞

Cj(q)u
j . (6.1)

Here, the coefficients Cj are calculable and turn out to be momentum independent, and

the expansion parameter u ≡ −P 2/q2 � 1. Note that this parameter is the analogue of the

inverse Bjorken scaling variable known from deep inelastic scattering. There is a profound

difference between these two parameters, however. While in standard discussions of deep

inelastic scattering in the infinite momentum frame one makes use of asymptotic freedom,

this is not possible in gravity. For the problem at hand, however, there is a natural limit

and correspondingly an appropriate expansion parameter. Namely, considering black holes

of large mass and momentum transfers smaller than MP (which is needed in order to trust

the perturbative expansion) we are naturally lead to the expansion parameter u.

– 12 –
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Figure 2. Integration contour in the complex u-plane. The left figure displays an integration

contour corresponding to the radius of convergence. In order to relate this to the physical u-region

(P 2 > Q2) we perform a contour deformation (right figure). The radius of the circle is sent to

infinity.

The discontinuity of C for fixed q2 = −Q2 is at

u∗ =
MB

2(M ′B −MB)

(
1−

M ′2B −M2
B

Q2

)
� 1 . (6.2)

So C has an isolated pole at u∗ � 1 and, in particular, no branch cut in leading order, cor-

responding to the statement that M ′B/MB− 1 ≈ 0. Of course, the presence of a branch cut

beyond leading order poses no obstacle. On the contrary, it has an evident interpretation

in terms of intermediate black hole excitations.

In order to project onto the Laurent-coefficients, a path enclosing [−u∗, u∗] ⊂ R in the

complex u plane has to be chosen. This covers the physical u region, while the radius of

convergence of the corresponding Taylor series would only allow for unphysical u ∈ [−1, 1]

(see figure 2). We find∫ 1

0
dζ ζk−2A(q, P, ζ) =

Ck−1

4π2
〈B|Φ(r)Φ(0)|B〉 θ(q, P ) , (6.3)

with ζ ≡ 1/u denoting the graviton virtuality relative to the black hole target mass. Hence,

all moments of the absorption tensor with respect to ζ are directly proportional to the con-

stituent distribution inside the black hole. This implies that dσ/d3k′ ∝ 〈B|Φ(r)Φ(0)|B〉.
Thus, black hole constituent distributions are observables that can be extracted from scat-

tering experiments.

Although 〈B|Φ(r)Φ(0)|B〉 can in practice not be determined from first principles, we

will give a simple toy model for the wave function in the next section and compute D(|r|).
Requiring that the wave function is localized within the Schwarzschild radius (which seems

to be a sensible assumption), will lead to a qualitative understanding of the distribution of

quanta inside |B〉.
In order to allow quantitative statements this means that the distribution should be

measured at some scale Λ � Mp where the effective field theory description is valid.

Predicting the cross section at a different scale can then be achieved by means of renormal-

ization group techniques. Notice that this procedure is similar to the DGLAP evolution of

quark and gluon distributions within the framework of perturbative QCD. Renormalization

group evolution, however, will be studied in future work.
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Figure 3. This is the only diagram contributing to D(|r|). Straight lines represent free propagators,

while lines ending in crosses correspond to non-perturbative condensation processes.

7 Constituent distribution at parton level

In sections 5 & 6 we presented a constituent interpretation for virtual graviton absorption

by a black hole quantum bound state. Central for this interpretation was the constituent

distribution D(r) ≡ 〈B|Φ(r)Φ(0)|B〉. As discussed in section 2, D(r) can only depend on

the spatial distance |r|, but not on time.

The spatial length scale |r| is at the observers disposal. It can be interpreted as the

necessarily finite spatial extent of an apparatus that emits a Φ quantum at one end and

subsequently absorbs it at the other end. In between emission and absorption the quantum

probes the medium in which the apparatus has been submerged, in our case the black hole

interior. At the partonic level, no individual interactions between the probe and black hole

constituents take place, therefore the only relevant scale remains |r|. Effectively, then, there

is only the correlation across the apparatus between emission and absorption events, which

scales as |r|−2. The light-cone distribution of black hole constituents has been calculated

in [8] at the parton level and to leading order in 1/N . As explained in [8] these 1/N -

corrections already arise at the level of combinatorics associated to the diagrams that need

to be computed. Note that these corrections are in accordance with the ideas of [4].

D(|r|) = 2

(
N

MB

)4

Γ−2
B 〈Φ

2(N−2)〉 1

4π2|r|2

∫
d3P cos(Pr/2)|B(P,Q)|2, (7.1)

where 〈Φ2(N−2)〉 is a condensate parametrizing the non-perturbative vacuum structure

inside a black hole quantum bound state. At the diagrammatic level, D(|r|) can be repre-

sented by figure 3. Note that gauge corrections to (7.1) can be calculated following [8].

Even in the absence of gauge interactions, N carries non-perturbative information via

its dependence on ΓB and, in addition, its dependence on Φ condensates, see [8]. The

latter dependence deserves elaboration. It can be traced back to the fact that N � 1

for black holes, implying minimal connectivity between the space-time events at which

the auxiliary currents are operative. At the level of D(|r|), this can be seen as follows.

The constituent distribution is generated by a four-point correlator, where two space-time

points are associated with the read-in events (auxiliary current locations) and one point-

split for localising an apparatus of finite extent, consisting of an emitter and an absorber.
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Figure 4. Parton distribution as a function of the wavelength for a gaussian wave function

of variance rg (dashed line) and a Heaviside profile (solid line). Here D̃(λ/rg) is normalised to
rg
2 (N/M)4Γ−2B 〈Φ2(N−2)〉. The distribution is plotted only for wavelengths λ < 4rg since the con-

densates are not supported outside the black hole. By construction our analysis is valid only

up to λ = 2rg.

The measurement process requires altogether six Φ fields at four space-time locations.

The vast majority of fields composing the auxiliary currents has two options. Either they

enhance the connectivity between the currents locations, or they condense. Condensation

of Φ quanta turns out to be the favoured option in the so-called double scaling limit,

N,MB →∞ and N/MB =const., where MB denotes the bound state’s mass.

Violations of this limit are not exponentially suppressed, but of order 1/N � 1,

indicating the essential quantum character of black holes. Since the cross section is

given in terms of the number density, these corrections are in principle measurable in

scattering experiments.

Black holes naturally are large-N quantum bound states. If operative as sources, they

trivialize (planar dominance [6, 7]) the underlying quantum theory of constituent fields and

represent an unrivalled realisation of the large-N limit in nature.

Before concluding this section, let us calculate the constituent distribution D(|r|) as-

suming a Gaussian wave function B(P,Q) for the black hole peaked around MB with a

standard deviation given by 1/rg. This choice reflects those features of the a priori unknown

black hole state that are relevant for the qualitative behaviour of the constituent distribu-

tion. For instance, the non-perturbative ground state has compact support characterised

by the size of the bound state itself. In figure 4 we show the constituent distribution in

wavelength space, D̃(λ) ∝ λ erf(2rg/λ), where erf denotes the error function and λ = 1/|k|.
Here |k| is the absolute value of the constituent three-momentum. As can be seen, black

hole constituents favour to occupy long wavelength modes. In other words, black hole

interiors are dominated by soft physics in accordance with the postulates of reference [4].
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8 Discussion & summary

Black holes are perhaps the most celebrated solutions of general relativity. Within our

framework they are considered as bound states of quantum constituents on flat space-time

with physical radius rg.

We discussed the representation of bound states in terms of currents in detail. Sub-

sequently we specialised to spherically symmetric gravitating sources including black hole

quantum bound states.

A quantum theory of black hole constituents allows to extract structural information

from the associated quantum bound state. We showed that the process of virtual graviton

absorption by a black hole is directly related to the constituent distribution inside the

black hole. In particular, we gave a precise prediction for the differential scattering cross

section of massless scalars on a black hole in terms of microscopic degrees of freedom

constituting the bound state. Hence the constituent distribution is a faithful observable

— it can be defined using a gauge invariant operator and, in addition, a scattering process

can be specified allowing its measurement. Thus, in contrast to the standard lore, within

our framework an outside observer in principle has access to the internal structure of a

black hole.

We discussed the physics underlying graviton absorption by black holes. The quan-

tum bound state proposal employed here is based on individually weakly coupled con-

stituents immersed in a non-trivial medium. Constituent condensation is supported by

a non-perturbative ground state |Ω〉 and by the large-N character of black holes. The

quantum bound states associated with black holes can be generated by operating with

an appropriate current J on |Ω〉. These sources trivialise the underlying field theory and

allow to consider black holes as the simplest realisations of large-N bound states in nature.

Finite N effects can (and should) be studied, since they are not exponentially suppressed,

proving that the bound state construction is truly quantum, and, consequently, that black

holes are essentially beyond a semi-classical description. Furthermore, higher order radia-

tive corrections to the scattering process leading to evolution equations for the distribution

function should be considered in the future.
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