2,062 research outputs found
Calculation of the Phase Behavior of Lipids
The self-assembly of monoacyl lipids in solution is studied employing a model
in which the lipid's hydrocarbon tail is described within the Rotational
Isomeric State framework and is attached to a simple hydrophilic head.
Mean-field theory is employed, and the necessary partition function of a single
lipid is obtained via a partial enumeration over a large sample of molecular
conformations. The influence of the lipid architecture on the transition
between the lamellar and inverted-hexagonal phases is calculated, and
qualitative agreement with experiment is found.Comment: to appear in Phys.Rev.
Obesity: A Biobehavioral Point of View
Excerpt: If you ask an overweight person, “Why are you fat?’, you will, almost invariably, get the answer, “Because 1 eat too much.” You will get this answer in spite of the fact that of thirteen studies, six find no significant differences in the caloric intake of obese versus nonobese subjects, five report that the obese eat significantly less than the nonobese, and only two report that they eat significantly more
Surface and Sub-Surface Composition and Properties of Ion-Bombarded Lithium Alloys
Lithium-bearing alloys such as Si-Li, Al-Li and Cu-Li are of importance in a variety of technological applications, many of them depending on the fact that the surface composition of these alloys differs significantly from that of the bulk, both at thermal equilibrium and under ion bombardment. During ion sputtering, these materials exhibit a variety of phenomena which affect the surface composition and concentration depth profile in a complex manner. We present here experimental measurements of the surface and near-surface composition profiles of sputtered Cu-Li and Al-Li alloys. The experimental results are interpreted in terms of surface loss and radiation-induced segregation processes. Emphasis is placed on the use of these materials for use as plasma-interactive components in magnetic-confinement fusion applications
Structuring in liquid alkanes between solid surfaces : force measurements and mean-field theory
Measurements have been made of the solvation forces between mica surfaces in the even-numbered n-alkanes from hexane to hexadecane. In all cases the force law is qualitatively very similar, characterized by a decaying oscillatory function of distance, as occurs for simple isotropic liquids. The spacing between successive minima in the force does not increase with carbon number, and is comparable to the width of a linear alkane molecule rather than its length or any average diameter. This suggests that the alkanes have some tendency towards a parallel orientation near the mica surfaces. The measurements give no indication of any strong repulsive component expected from mean-field theories of higher alkanes or polymers. The results of one such theory are presented, and the reasons for its failure to match the experimental data are discussed. <br /
A stacking-fault based microscopic model for platelets in diamond
We propose a new microscopic model for the planar defects in
diamond commonly called platelets. This model is based on the formation of a
metastable stacking fault, which can occur because of the ability of carbon to
stabilize in different bonding configurations. In our model the core of the
planar defect is basically a double layer of three-fold coordinated
carbon atoms embedded in the common diamond structure. The properties of
the model were determined using {\it ab initio} total energy calculations. All
significant experimental signatures attributed to the platelets, namely, the
lattice displacement along the direction, the asymmetry between the
and the directions, the infrared absorption peak
, and broad luminescence lines that indicate the introduction of
levels in the band gap, are naturally accounted for in our model. The model is
also very appealing from the point of view of kinetics, since naturally
occurring shearing processes will lead to the formation of the metastable
fault.Comment: 5 pages, 4 figures. Submitted for publication on August 2nd, 200
Multipoint genome-wide linkage scan for nonword repetition in a multigenerational family further supports chromosome 13q as a locus for verbal trait disorders
Verbal trait disorders encompass a wide range of conditions and are marked by deficits in five domains that impair a person’s ability to communicate: speech, language, reading, spelling, and writing. Nonword repetition is a robust endophenotype for verbal trait disorders that is sensitive to cognitive processes critical to verbal development, including auditory processing, phonological working memory, and motor planning and programming. In the present study, we present a six-generation extended pedigree with a history of verbal trait disorders. Using genome-wide multipoint variance component linkage analysis of nonword repetition, we identified a region spanning chromosome 13q14–q21 with LOD = 4.45 between 52 and 55 cM, spanning approximately 5.5 Mb on chromosome 13. This region overlaps with SLI3, a locus implicated in reading disability in families with a history of specific language impairment. Our study of a large multigenerational family with verbal trait disorders further implicates the SLI3 region in verbal trait disorders. Future studies will further refine the specific causal genetic factors in this locus on chromosome 13q that contribute to language traits
Apolipoprotein E4 Polymorphism and Outcomes from Traumatic Brain Injury : A Living Systematic Review and Meta-Analysis
The mortality of traumatic brain injury (TBI) has been largely static despite advances in monitoring and imaging techniques. Substantial variance exists in outcome, not fully accounted for by baseline characteristics or injury severity, and genetic factors likely play a role in this variance. The aims of this systematic review were to examine the evidence for a link between the apolipoprotein E4 (APOE4) polymorphism and TBI outcomes and where possible, to quantify the effect size via meta-analysis. We searched EMBASE, MEDLINE, CINAHL, and gray literature in December 2017. We included studies of APOE genotype in relation to functional adult TBI outcomes. Methodological quality was assessed using the Quality in Prognostic Studies Risk of Bias Assessment Instrument and the prognostic studies adaptation of the Grading of Recommendations Assessment, Development and Evaluation tool. In addition, we contacted investigators and included an additional 160 patients whose data had not been made available for previous analyses, giving a total sample size of 2593 patients. Meta-analysis demonstrated higher odds of a favorable outcome following TBI in those not possessing an ApoE e4 allele compared with e4 carriers and homozygotes (odds ratio 1.39, 95% confidence interval 1.05 to 1.84; p = 0.02). The influence of APOE4 on neuropsychological functioning following TBI remained uncertain, with multiple conflicting studies. We conclude that the ApoE e4 allele confers a small risk of poor outcome following TBI, with analysis by TBI severity not possible based on the currently available published data. Further research into the long-term neuropsychological impact and risk of dementia is warranted.Peer reviewe
Recommended from our members
High Plasma-Flux Elevated Temperature Sputtering of Cu-Li Alloys
Copper-lithium alloys ranging in composition from 3 to 12 at. % Li have been exposed to sputtering by 3 x 10/sup 16/ - 6 x 10/sup 17/ 100 eV He+/cm/sup 2/-sec at temperatures of 300 to 500/sup 0/C at the UCLA PISCES plasma device. Weight loss and optical spectroscopy techniques were used to determine the sputtering-induced erosion of the binary alloys relative to pure copper. It was found that the weight loss of the alloy and the amount of copper in the plasma as measured by emission spectroscopy never exceeded that of pure copper and in some cases was reduced by a factor of five or more. Post-irradiation analysis by Auger electron spectroscopy and scanning electron microscopy show a correlation between lithium surface depletion, surface roughening, weight loss, and partial erosion yields as measured by plasma emission spectroscopy
Astrometric calibration and performance of the Dark Energy Camera
We characterize the ability of the Dark Energy Camera (DECam) to perform
relative astrometry across its 500~Mpix, 3 deg^2 science field of view, and
across 4 years of operation. This is done using internal comparisons of ~4x10^7
measurements of high-S/N stellar images obtained in repeat visits to fields of
moderate stellar density, with the telescope dithered to move the sources
around the array. An empirical astrometric model includes terms for: optical
distortions; stray electric fields in the CCD detectors; chromatic terms in the
instrumental and atmospheric optics; shifts in CCD relative positions of up to
~10 um when the DECam temperature cycles; and low-order distortions to each
exposure from changes in atmospheric refraction and telescope alignment. Errors
in this astrometric model are dominated by stochastic variations with typical
amplitudes of 10-30 mas (in a 30 s exposure) and 5-10 arcmin coherence length,
plausibly attributed to Kolmogorov-spectrum atmospheric turbulence. The size of
these atmospheric distortions is not closely related to the seeing. Given an
astrometric reference catalog at density ~0.7 arcmin^{-2}, e.g. from Gaia, the
typical atmospheric distortions can be interpolated to 7 mas RMS accuracy (for
30 s exposures) with 1 arcmin coherence length for residual errors. Remaining
detectable error contributors are 2-4 mas RMS from unmodelled stray electric
fields in the devices, and another 2-4 mas RMS from focal plane shifts between
camera thermal cycles. Thus the astrometric solution for a single DECam
exposure is accurate to 3-6 mas (0.02 pixels, or 300 nm) on the focal plane,
plus the stochastic atmospheric distortion.Comment: Submitted to PAS
- …