7,252 research outputs found

    Macroscopic equations for the adiabatic piston

    Get PDF
    A simplified version of a classical problem in thermodynamics -- the adiabatic piston -- is discussed in the framework of kinetic theory. We consider the limit of gases whose relaxation time is extremely fast so that the gases contained on the left and right chambers of the piston are always in equilibrium (that is the molecules are uniformly distributed and their velocities obey the Maxwell-Boltzmann distribution) after any collision with the piston. Then by using kinetic theory we derive the collision statistics from which we obtain a set of ordinary differential equations for the evolution of the macroscopic observables (namely the piston average velocity and position, the velocity variance and the temperatures of the two compartments). The dynamics of these equations is compared with simulations of an ideal gas and a microscopic model of gas settled to verify the assumptions used in the derivation. We show that the equations predict an evolution for the macroscopic variables which catches the basic features of the problem. The results here presented recover those derived, using a different approach, by Gruber, Pache and Lesne in J. Stat. Phys. 108, 669 (2002) and 112, 1177 (2003).Comment: 13 pages, 7 figures (revTeX4) The paper has been completely rewritten with new derivation and results, supplementary information can be found at http://denali.phys.uniroma1.it/~cencini/Papers/cppv07_supplements.pd

    One hundred years of Alfred Landé's g-factor

    Get PDF
    Prompted by the centenary of Alfred Landé's g-factor, we reconstruct Landé's path to his discovery of half-integer angular momentum quantum numbers and of vector coupling of atomic angular momenta—both encapsulated in the g-factor—as well as point to reverberations of Landé's breakthroughs in the work of other pioneers of quantum physics

    Strain bursts in plastically deforming Molybdenum micro- and nanopillars

    Full text link
    Plastic deformation of micron and sub-micron scale specimens is characterized by intermittent sequences of large strain bursts (dislocation avalanches) which are separated by regions of near-elastic loading. In the present investigation we perform a statistical characterization of strain bursts observed in stress-controlled compressive deformation of monocrystalline Molybdenum micropillars. We characterize the bursts in terms of the associated elongation increments and peak deformation rates, and demonstrate that these quantities follow power-law distributions that do not depend on specimen orientation or stress rate. We also investigate the statistics of stress increments in between the bursts, which are found to be Weibull distributed and exhibit a characteristic size effect. We discuss our findings in view of observations of deformation bursts in other materials, such as face-centered cubic and hexagonal metals.Comment: 14 pages, 8 figures, submitted to Phil Ma

    On the structure of the body of states with positive partial transpose

    Full text link
    We show that the convex set of separable mixed states of the 2 x 2 system is a body of constant height. This fact is used to prove that the probability to find a random state to be separable equals 2 times the probability to find a random boundary state to be separable, provided the random states are generated uniformly with respect to the Hilbert-Schmidt (Euclidean) distance. An analogous property holds for the set of positive-partial-transpose states for an arbitrary bipartite system.Comment: 10 pages, 1 figure; ver. 2 - minor changes, new proof of lemma

    On the Second Law of thermodynamics and the piston problem

    Full text link
    The piston problem is investigated in the case where the length of the cylinder is infinite (on both sides) and the ratio m/Mm/M is a very small parameter, where mm is the mass of one particle of the gaz and MM is the mass of the piston. Introducing initial conditions such that the stochastic motion of the piston remains in the average at the origin (no drift), it is shown that the time evolution of the fluids, analytically derived from Liouville equation, agrees with the Second Law of thermodynamics. We thus have a non equilibrium microscopical model whose evolution can be explicitly shown to obey the two laws of thermodynamics.Comment: 29 pages, 9 figures submitted to Journal of Statistical Physics (2003

    The Activity of the Serotonin Receptor 2C is Regulated by Alternative Splicing

    Get PDF
    The central nervous system-specific serotonin receptor 2C (5HT2C) controls key physiological functions, such as food intake, anxiety, and motoneuron activity. Its deregulation is involved in depression, suicidal behavior, and spasticity, making it the target for antipsychotic drugs, appetite controlling substances, and possibly anti-spasm agents. Through alternative pre-mRNA splicing and RNA editing, the 5HT2C gene generates at least 33 mRNA isoforms encoding 25 proteins. The 5HT2C is a G-protein coupled receptor that signals through phospholipase C, influencing the expression of immediate/early genes like c-fos. Most 5HT2C isoforms show constitutive activity, i.e., signal without ligand binding. The constitutive activity of 5HT2C is decreased by pre-mRNA editing as well as alternative pre-mRNA splicing, which generates a truncated isoform that switches off 5HT2C receptor activity through heterodimerization; showing that RNA processing regulates the constitutive activity of the 5HT2C system. RNA processing events influencing the constitutive activity target exon Vb that forms a stable double stranded RNA structure with its downstream intron. This structure can be targeted by small molecules and oligonucleotides that change exon Vb alternative splicing and influence 5HT2C signaling in mouse models, leading to a reduction in food intake. Thus, the 5HT2C system is a candidate for RNA therapy in multiple models of CNS disorders

    Phase Rotation, Cooling And Acceleration Of Muon Beams: A Comparison Of Different Approaches

    Get PDF
    Experimental and theoretical activities are underway at CERN with the aim of examining the feasibility of a very-high-flux neutrino source. In the present scheme, a high-power proton beam (some 4 MW) bombards a target where pions are produced. The pions are collected and decay to muons under controlled optical condition. The muons are cooled and accelerated to a final energy of 50 GeV before being injected into a decay ring where they decay under well-defined conditions of energy and emittance. We present the most challenging parts of the whole scenario, the muon capture, the ionisation-cooling and the first stage of the muon acceleration. Different schemes, their performance and the technical challenges are compared.Comment: LINAC 2000 CONFERENCE, paper ID No. THC1

    Solid-Solid Interfacial Contact of Tubing Walls Drives Therapeutic Protein Aggregation During Peristaltic Pumping

    Get PDF
    Peristaltic pumping during bioprocessing can cause therapeutic protein loss and aggregation during use. Due to the complexity of this apparatus, root-cause mechanisms behind protein loss have been long sought. We have developed new methodologies isolating various peristaltic pump mechanisms to determine their effect on monomer loss. Closed-loops of peristaltic tubing were used to investigate the effects of peristaltic pump parameters on temperature and monomer loss, whilst two mechanism isolation methodologies are used to isolate occlusion and lateral expansion-relaxation of peristaltic tubing. Heat generated during peristaltic pumping can cause heat-induced monomer loss and the extent of heat gain is dependent on pump speed and tubing type. Peristaltic pump speed was inversely related to the rate of monomer loss whereby reducing speed 2.0-fold increased loss rates by 2.0- to 5.0-fold. Occlusion is a parameter that describes the amount of tubing compression during pumping. Varying this to start the contacting of inner tubing walls is a threshold that caused an immediate 20-30% additional monomer loss and turbidity increase. During occlusion, expansion-relaxation of solid-liquid interfaces and solid-solid interface contact of tubing walls can occur simultaneously. Using two mechanisms isolation methods, the latter mechanism was found to be most destructive and a function of solid-solid contact area, where increasing the contact area 2.0-fold increased monomer loss by 1.6-fold. We establish that a form of solid-solid contact mechanism whereby the contact solid interfaces disrupt adsorbed protein films is the root-cause behind monomer loss and protein aggregation during peristaltic pumping

    The Use of Gamma-ray Bursts as Direction and Time Markers in SETI Strategies

    Get PDF
    When transmitting a signal over a large distance it is more efficient to send a brief beamed signal than a continuous omni-directional transmission but this requires that the receiver knows where and when to look for the transmission. For SETI, the use of various natural phenomena has previously been suggested to achieve the desired synchronization. Here it is proposed that gamma-ray bursts may well the best ``synchronizers'' of all currently known phenomena due to their large intrinsic luminosities, high occurrence rate, isotropic sky distribution, large distance from the Galaxy, short duration, and easy detectability. For targeted searches, precise positions for gamma-ray bursts are required together with precise distance measurements to a target star. The required burst position determinations are now starting to be obtained, aided in large part by the discovery of optical afterglows. Good distance measurements are currently available from Hipparcos and even better measurements should be provided by spacecraft now being developed. For non-targeted searches, positional accuracies simply better than a detector's field of view may suffice but the time delay between the detection of a gamma-ray burst and the reception of the transmitted signal cannot be predicted in an obvious way.Comment: 8 pages, accepted for publication in PAS

    Finite-Dimensional Calculus

    Get PDF
    We discuss topics related to finite-dimensional calculus in the context of finite-dimensional quantum mechanics. The truncated Heisenberg-Weyl algebra is called a TAA algebra after Tekin, Aydin, and Arik who formulated it in terms of orthofermions. It is shown how to use a matrix approach to implement analytic representations of the Heisenberg-Weyl algebra in univariate and multivariate settings. We provide examples for the univariate case. Krawtchouk polynomials are presented in detail, including a review of Krawtchouk polynomials that illustrates some curious properties of the Heisenberg-Weyl algebra, as well as presenting an approach to computing Krawtchouk expansions. From a mathematical perspective, we are providing indications as to how to implement in finite terms Rota's "finite operator calculus".Comment: 26 pages. Added material on Krawtchouk polynomials. Additional references include
    • …
    corecore