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Finite-Dimensional Calculus
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Abstract. We develop finite-dimensional calculus using matrices.

The truncated Heisenberg-Weyl algebra is called a TAA algebra after

Tekin, Aydin, and Arik who formulated it in terms of orthofermions.

The matrix approach is used to implement our method of polynomial

inversion in one-variable and multivariable settings. Here we estab-

lish notations, present some algebraic developments, and discuss the

univariate case in detail.
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1 Introduction

The TAA algebra is generated by an operator a and its adjoint a∗. Let
N = a∗a. Then the defining commutation rule is [a, N ] = a. Taking adjoints
gives the complementary rule [N, a∗] = a∗. In other words, we assume that N
and a generate the two-dimensional Lie algebra of the affine group. Writing
it out

aa∗a− a∗aa = a (1)

we see that the commutation rule aa∗ − a∗a = 1 of the Heisenberg-Weyl al-
gebra has been multiplied by a on the right. This modification is enough to
yield finite-dimensional representations, including the truncated HW-algebra
given by the operators X =multiplication by x and D = d/dx acting on poly-
nomials of a given bounded degree. Writing matrices for these operators we
will see that they obey equation (1).

This article may be thought of as realizing Rota’s idea of “Finite Operator
Calculus”. There is work of P.R.Vein along similar lines [7, 8]. The main fea-
ture here is that, in fact, the operator calculus is done on finite-dimensional
spaces and can be carried out explicitly using matrices. The approach in
this paper is based on algebraic properties of the operators and includes in-
dications for the multivariable case. The one-variable case is dual to that
presented in [2].

2 Orthofermion formulation

Orthofermions with regard to connections with the HW algebra have been
studied in [6]. Start with a set of operators {c1, . . . , cp}, with p a positive
integer and form the star-algebra generated by the {ci} modulo the following
relations

cicj = 0

cic
∗
j + δij

p
∑

k=1

c∗kck = δij 1 (2)
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where 1 is the identity operator. Setting Π = 1−
p
∑

k=1

c∗kck (as in [5]) we can

write this last relation as
cic

∗
j = δij Π

where one readily shows from the defining relations (2) that Π2 = Π, i.e., Π
is a projection as suggested by the notation.

From the defining relations, we see that Πck = ck and from the second relation
of eq. (2) follows the useful relation

cic
∗
jck = δij ck (3)

Within the orthofermion algebra, following [6], modifying slightly their for-
mulation, we set

a = c1 +
p
∑

k=2

k c∗k−1ck

a† = c∗1 +
p
∑

k=2

c∗kck−1

Using equation (3), we get

aa† − a†a = 1− (p + 1) c∗pcp

which then yields the relation corresponding to equation (1) of the TAA
algebra.

3 One-variable calculus with matrices

Restricting the differentiation operator to the finite-dimensional space of
polynomials of degree less than or equal to p is no problem. Use the standard
basis {1, x, x2, . . . , xp}. For p = 4, we have

D̂ =















0 1 0 0 0
0 0 2 0 0
0 0 0 3 0
0 0 0 0 4
0 0 0 0 0














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with the extension to general p following the same pattern. However, mul-
tiplication by x must be cut off. If we define X xi = xi+1 for i < p and
X xp = 0, we no longer have the relation DX −XD = 1. But we still have
DXD−XDD = D as for the TAA algebra. The matrix of X has the form,
for p = 4, e.g.,

X̂ =















0 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0















Note that X̂p+1 = 0. To keep in line with the powers of x, we label the
basis elements starting from 0. So let ek denote the column vector with the
only nonzero entry equal to 1 in the (k + 1)st position. The vacuum state is
Ω = e0, satisfying D̂Ω = 0. And X̂kΩ = ek, for 1 ≤ k ≤ p. As expected,
these are raising and lowering operators satisfying

X̂ek = ek+1 θkp , D̂ek = k ek−1

where θij = 1 if i < j, zero otherwise.

With the inner product 〈en, em〉 = δnm n! , we indeed have D̂∗ = X̂.

Let Eij denote the standard unit matrices with all but one entry equal to
zero, (Eij)kl = δikδjl, 1 ≤ i, j, k, l ≤ p+1. The connection with orthofermions
is given by the (p + 1)× (p + 1) matrix realization

ĉi = E1 i+1

for 1 ≤ i ≤ p. We have the orthofermion relations and particularly for this
realization

ĉ∗i ĉj = Ei+1 j+1

Note that Π̂ = E11 and that the star-algebra generated by the ĉi is the full
matrix algebra.

As long as X never multiplies the power xp, the matrix implementation agrees
with usual calculus. The TAA relation formulates this algebraically.

The following theorem shows that D̂ and X̂ not only do not generate a
Heisenberg algebra, but, in fact, are as far as possible from doing so.
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Theorem 3.1 For p > 0, let D̂ and X̂ be (p+1)×(p+1) matrices defined by

D̂ =
p
∑

k=1

k Ek k+1, X̂ =
p
∑

k=1

Ek+1 k. Then the Lie algebra generated by {X̂, D̂}

is sl(p + 1) .

Proof: For convenience set n = p + 1. First we have

H = [D̂, X̂] = −p Enn +
p
∑

k=1

Ekk

Set ξ1 = X̂, η1 = D̂, and H1 = H . For 2 ≤ k ≤ n, let ξk = H(
←−−
ad X̂)k, and

ηk = (ad D̂)kH , where (ad A)B = [A, B] and A(
←−−
ad B) = [A, B]. Then it is

easily checked by induction that

ξk = −n En n−k+1 and ηk = ak ξ†k

for nonzero constants ak, the † denoting matrix transpose. Thus, we have
Ein and Eni for 1 ≤ i ≤ p. Noting that [Ein, Enj ] = Eij if i 6= j, we have all
of the off-diagonal E ′s. And

Hk = [ηk, ξk] = −nak (En−k+1 n−k+1 − Enn)

fill out the Cartan elements of sl(n).

3.1 Examples

Here we look at some important operators for the case p = 4.

Example 3.2 The number operator is XD. We have

X̂D̂ =

























0 0 0 0 0

0 1 0 0 0

0 0 2 0 0

0 0 0 3 0

0 0 0 0 4
























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And, in general, we calculate

X̂D̂ =
p
∑

k=1

k Ek+1k+1

as we want.

Example 3.3 The Ornstein-Uhlenbeck operator , XD −D2, has the form
























0 0 0 0 0

0 1 −2 0 0

0 0 2 −6 0

0 0 0 3 −12

0 0 0 0 4

























Example 3.4 The translation operator, eD looks like
























1 1 1 1 1

0 1 2 3 4

0 0 1 3 6

0 0 0 1 4

0 0 0 0 1

























with columns given by binomial coefficients, corresponding to the action
x→ x + 1 on the basis polynomials xi.

Example 3.5 The Gegenbauer operator , see, e.g. [1], (XD + α)2 −D2, has
the matrix form

























α2 0 −2 0 0

0 (1 + α)2 0 −6 0

0 0 (2 + α)2 0 −12

0 0 0 (3 + α)2 0

0 0 0 0 (4 + α)2

























with corresponding Gegenbauer polynomials as eigenfunctions.
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4 Canonical variables and polynomials

Basic to our approach is the use of canonical variables which are functions of
X and D obeying the HW relations on an infinite-dimensional space, which
restricts to the TAA relation on spaces of polynomials in x of a given bounded
degree.

Let us review the basic construction and notations. We will discuss the gen-
eral, multivariable, case.

Note. We use our usual convention of summing over repeated Greek indices,
irrespective of position.

Given V :CN → CN , V (z) = (V1(z1, . . . , zN), . . . , VN(z1, . . . , zN)) holomor-
phic in a neighborhood of the origin, satisfying V (0) = 0, we construct a
corresponding abelian family of dual vector fields. Corresponding to the
operators Xi of multiplication by xi, we have the partial differentiation op-
erators, Di. In this context, a function of x = (x1, . . . , xN), f(x), is iden-
tified with f(X)1, the operator of multiplication by f(X) acting on the
vacuum state 1, with Di1 = 0, for all 1 ≤ i ≤ N . We define operators
V (D) = (V1(D1, . . . , DN), . . . , VN(D1, . . . , DN)). These are our canonical
lowering operators, corresponding to differentiation.

Denoting the Jacobian

(

∂Vi

∂zj

)

by V ′(z), let W (z) = (V ′(z))−1, be the inverse

(matrix inverse) Jacobian. Then the boson commutation relations extend to

[V (D), Xi] =
∂V

∂Di
. Now define the operators

Yi = XµWµi(D)

These are our canonical raising operators, corresponding to multiplication
by Xi. The canonical system of raising and lowering operators {Yj}, {Vi},
1 ≤ i, j ≤ N indeed satisfy [Vi, Yj] = δij1. The essential feature, which has to
be checked, is that, [Yi, Yj] = [Vi, Vj] = 0. Notice that exchanging D with X
is a formal Fourier transformation and turns the variables Yi into the vector
fields Ỹi = W (x)µi∂/∂xµ. Thus, the Yi are dual vector fields.
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Notation. We complement the standard notations used along with V and
W , letting U denote the inverse function to V . I.e., U ◦ V = V ◦ U = id.
Explicitly: U(V (z)) = z.

Observe that since W = V ′−1, we have W (z) = U ′(V (z)). In other words,
converting from z to V acting on functions of the canonical variables Yi, we
have X = Y U ′(V )−1.
The main formula (cf. [3, p. 185, eq. (1)]) is

exp(αµYµ) 1 = exp(xµUµ(α)) =
∑

n≥0

αn

n!
yn(x)

the n denoting a multi-index (n1, . . . , nN).
This expansion defines the canonical polynomials: yn(x) = Y n 1.

5 Multivariable calculus with matrices

Here we extend Section 3 to N variables. For matrices, A, B, the tensor
product A⊗B denotes the Kronecker product of the two matrices. That is,
if A is n× n, and B is m×m, then A⊗ B is nm× nm with entries formed
by replacing each entry aij in A with the block matrix aijB. For products of
more than two matrices, we conventionally associate to the left.

For a fixed p, we have (p + 1)× (p + 1) matrices D̂ and X̂. Let I denote the
(p + 1)× (p + 1) identity matrix. Then we set

D̂j = I ⊗ I ⊗ · · · ⊗ D̂ ⊗ I · · · ⊗ I (D̂ in the jth spot)

X̂j = I ⊗ I ⊗ · · · ⊗ X̂ ⊗ I · · · ⊗ I (X̂ in the jth spot)

Then D̂j and X̂j will satisfy the TAA relations while [D̂j , X̂i] = [X̂j, X̂i] =

[D̂j, D̂i] = 0 for i 6= j.

6 Canonical calculus with matrices

First consider the case N = 1. We have a function V (z) analytic in a
neighborhood of the origin in C, normalized to V (0) = 0, V ′(0) 6= 0. Let
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W (z) = 1/V ′(z) have the Taylor expansion

W (z) = w0 + w1z + · · ·+ wkz
k + · · ·

The corresponding canonical variable is Y = XW (D), satisfying [V (D), Y ] =
1. The canonical basis polynomials are yn(x) = Y n1, n ≥ 0. Fix the order
p. Let Ŵ = W (D̂). Then we employ the algebra generated by the operators
V̂ = V (D̂) and Ŷ = X̂Ŵ . Note, e.g., that since D̂p+1 = 0, the operators
V̂ and Ŵ are polynomials in D̂. Similarly, since X̂p+1 = 0, the polynomials
yn(X̂) are truncated if n > p. However, for n ≤ p, the correspondence be-
tween the polynomials yn(x) and vectors ŷn = yn(X̂)e0 is exact. Namely, the
vector ŷn gives the coefficients of the polynomial yn(x). The reason this works
is that up to order p, the operator X̂ never acts on a power of x greater than p.

6.1 Examples

Example 6.1 A basic example is given by

V (z) = ez − 1 , U(v) = log(1 + v)

so W (z) = e−z, Y = Xe−D. We can easily calculate

yn(x) = x(x− 1) · · · (x− n + 1) .

For p = 4, we get Ŷ =

























0 0 0 0 0

1 −1 1 −1 1

0 1 −2 3 −4

0 0 1 −3 6

0 0 0 1 −4

























and

Ŷ 2 =

























0 0 0 0 0

−1 2 −4 8 −15

1 −3 8 −20 43

0 1 −5 18 −46

0 0 1 −7 22

























, Ŷ 3 =

























0 0 0 0 0

2 −6 18 −53 126

−3 11 −39 130 −327

1 −6 29 −116 313

0 1 −9 46 −134
























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and

Ŷ 4 =

























0 0 0 0 0

−6 24 −95 345 −900

11 −50 219 −845 2255

−6 35 −180 754 −2070

1 −10 65 −300 849

























, Ŷ 5 =

























0 0 0 0 0

24 −119 559 −2244 6074

−50 269 −1333 5497 −15016

35 −215 1149 −4907 13559

−10 75 −440 1954 −5466

























with the first column giving the coefficients of the corresponding polynomial
yn, where we can see the truncation beginning in this last.

With U(v) = log(1 + v), the relation X = Y U ′(V )−1 reads X = Y + Y V or
xyn = yn+1 + nyn yielding the recurrence

yn+1 = (x− n)yn .

Example 6.2 Another interesting example is the Gaussian with drift,

V (z) = αz − z2/2 , U(v) = α−
√

α2 − 2v

the minus sign taken in U(v) to have U(0) = 0. Then W (z) =
1

α− z
, and

Ŷ =

























0 0 0 0 0

α−1 α−2 2 α−3 6 α−4 24 α−5

0 α−1 2 α−2 6 α−3 24 α−4

0 0 α−1 3 α−2 12 α−3

0 0 0 α−1 4 α−2

























Powers of Ŷ yield the canonical polynomials, the first few of which are

y1 =
x

α

y2 =
x

α3
+

x2

α2

y3 = 3
x

α5
+ 3

x2

α4
+

x3

α3
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y4 = 15
x

α7
+ 15

x2

α6
+ 6

x3

α5
+

x4

α4

y5 = 105
x

α9
+ 105

x2

α8
+ 45

x3

α7
+ 10

x4

α6
+

x5

α5

These are a scaled variation of Bessel polynomials.

In this case U ′(V )−1 = α
(

1− 2V

α2

)1/2

. Thus, expanding and rearranging

the relation X = Y U ′(V )−1,

αY = X+αY

(

V

α2
+

1

2

V 2

α4
+

1

2

V 3

α6
+

5

8

V 4

α8
+

7

8

V 5

α10
+

21

16

V 6

α12
+

33

16

V 7

α14
+ . . .

)

which translates to

α yn+1 = xyn +
n

α
yn +

n(n− 1)

2α3
yn−1 +

n(n− 1)(n− 2)

2α5
yn−2 + . . .

= xyn +
n

α
yn +

n
∑

k=2

(

n

k

)

(2k − 3)!!

α2k−1
yn−k+1

Example 6.3 For our final example in this section, we mention the reflected
LambertW function, which we denote W to avoid confusion with our W .
Take V (z) = ze−z , see [4, p. 110]. Then U(v) = −W(−v). We find Y =
XeD(I −D)−1 and with p = 7 the corresponding matrix

Ŷ =













































0 0 0 0 0 0 0 0

1 2 5 16 65 326 1957 13700

0 1 4 15 64 325 1956 13699

0 0 1 6 30 160 975 6846

0 0 0 1 8 50 320 2275

0 0 0 0 1 10 75 560

0 0 0 0 0 1 12 105

0 0 0 0 0 0 1 14













































One can show that yn = x(x + n)n−1 and that the relation X = Y U ′(V )−1

leads to the recurrence

yn+1 = (x + 2n)yn +
n
∑

k=2

(

n

k

)

(k − 1)k−1 yn−k+1 .
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6.2 Matrix expansions

Using the unit matrices Eij of size (p + 1)× (p + 1), we can write formulas
for the basic operators. We have used in Theorem 3.1 the expressions

D̂ =
p
∑

k=1

k Ek k+1 and X̂ =
p
∑

k=1

Ek+1k

Then induction yields

D̂j =
∑

1≤k≤p

1≤k+j≤p+1

(k)j Ek k+j

with (k)j = k(k + 1) · · · (k + j − 1) denoting the rising factorial. Multiplying

by X̂ gives
Ŷ =

∑

1≤k≤p

1≤k+j≤p+1

Ek+1k+j (k)j wj

For N > 1, the matrices for Dj and Xj provide the operators Ŷj = X̂µWµi(D̂)
as matrices. Repeated multiplication on the vacuum vector e0 yields exactly
the coefficients of the polynomials yn up to order p. Here, order p means that
no variable xi appears to a power higher than p.

7 Summary and prospects

In this article, the one-variable case of the matrix approach has been pre-
sented in some detail, along with the basic theory for the multivariate case.
The TAA algebra conveniently replaces the HW algebra in the finite-dimensional
setting. The connection with orthofermions is interesting and clarifies the un-
derlying structure.

In Part II of this series of articles, we will look at multivariate systems from
the point of view of dual vector fields. We will present and use corresponding
matrix formulations. In Part III, we expect to have some C and/or Java
code implementing the techniques of Parts I and II. For Part IV, the plan is
to develop useful rigorous estimates for establishing the order of truncation
required for applications.
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