10,727 research outputs found

    Influence of anisotropic next-nearest-neighbor hopping on diagonal charge-striped phases

    Full text link
    We consider the model of strongly-correlated system of electrons described by an extended Falicov-Kimball Hamiltonian where the stability of some axial and diagonal striped phases was proved. Introducing a next-nearest-neighbor hopping, small enough not to destroy the striped structure, we examine rigorously how the presence of the next-nearest-neighbor hopping anisotropy reduces the π/2\pi/2-rotation degeneracy of the diagonal-striped phase. The effect appears to be similar to that in the case of anisotropy of the nearest-neighbor hopping: the stripes are oriented in the direction of the weaker next-nearest-neighbor hopping.Comment: 9 pages, 3 figures, 1 tabl

    On the Second Law of thermodynamics and the piston problem

    Full text link
    The piston problem is investigated in the case where the length of the cylinder is infinite (on both sides) and the ratio m/Mm/M is a very small parameter, where mm is the mass of one particle of the gaz and MM is the mass of the piston. Introducing initial conditions such that the stochastic motion of the piston remains in the average at the origin (no drift), it is shown that the time evolution of the fluids, analytically derived from Liouville equation, agrees with the Second Law of thermodynamics. We thus have a non equilibrium microscopical model whose evolution can be explicitly shown to obey the two laws of thermodynamics.Comment: 29 pages, 9 figures submitted to Journal of Statistical Physics (2003

    Design of a low-noise aeroacoustic wind tunnel facility at Brunel University

    Get PDF
    This paper represents the design principle of a quiet, low turbulence and moderately high speed aeroacoustic wind tunnel which was recently commissioned at Brunel University. A new hemi-anechoic chamber was purposely built to facilitate aeroacoustic measurements. The wind tunnel can achieve a maximum speed of about 80 ms-1. The turbulence intensity of the free jet in the potential core is between 0.1–0.2%. The noise characteristic of the aeroacoustic wind tunnel was validated by three case studies. All of which can demonstrate a very low background noise produced by the bare jet in comparison to the noise radiated from the cylinder rod/flat plate/airfoil in the air stream.The constructions of the aeroacoustic wind tunnel and the hemi-anechoic chamber are financially supported by the School of Engineering and Design at Brunel University

    Finite-Dimensional Calculus

    Get PDF
    We discuss topics related to finite-dimensional calculus in the context of finite-dimensional quantum mechanics. The truncated Heisenberg-Weyl algebra is called a TAA algebra after Tekin, Aydin, and Arik who formulated it in terms of orthofermions. It is shown how to use a matrix approach to implement analytic representations of the Heisenberg-Weyl algebra in univariate and multivariate settings. We provide examples for the univariate case. Krawtchouk polynomials are presented in detail, including a review of Krawtchouk polynomials that illustrates some curious properties of the Heisenberg-Weyl algebra, as well as presenting an approach to computing Krawtchouk expansions. From a mathematical perspective, we are providing indications as to how to implement in finite terms Rota's "finite operator calculus".Comment: 26 pages. Added material on Krawtchouk polynomials. Additional references include

    A complete devil's staircase in the Falicov-Kimball model

    Get PDF
    We consider the neutral, one-dimensional Falicov-Kimball model at zero temperature in the limit of a large electron--ion attractive potential, U. By calculating the general n-ion interaction terms to leading order in 1/U we argue that the ground-state of the model exhibits the behavior of a complete devil's staircase.Comment: 6 pages, RevTeX, 3 Postscript figure

    Strain bursts in plastically deforming Molybdenum micro- and nanopillars

    Full text link
    Plastic deformation of micron and sub-micron scale specimens is characterized by intermittent sequences of large strain bursts (dislocation avalanches) which are separated by regions of near-elastic loading. In the present investigation we perform a statistical characterization of strain bursts observed in stress-controlled compressive deformation of monocrystalline Molybdenum micropillars. We characterize the bursts in terms of the associated elongation increments and peak deformation rates, and demonstrate that these quantities follow power-law distributions that do not depend on specimen orientation or stress rate. We also investigate the statistics of stress increments in between the bursts, which are found to be Weibull distributed and exhibit a characteristic size effect. We discuss our findings in view of observations of deformation bursts in other materials, such as face-centered cubic and hexagonal metals.Comment: 14 pages, 8 figures, submitted to Phil Ma

    Lower bound for the segregation energy in the Falicov-Kimball model

    Full text link
    In this work, a lower bound for the ground state energy of the Falicov-Kimball model for intermediate densities is derived. The explicit derivation is important in the proof of the conjecture of segregation of the two kinds of fermions in the Falicov-Kimball model, for sufficiently large interactions. This bound is given by a bulk term, plus a term proportional to the boundary of the region devoid of classical particles. A detailed proof is presented for density n=1/2, where the coefficient 10^(-13) is obtained for the boundary term, in two dimensions. With suitable modifications the method can also be used to obtain a coefficient for all densities.Comment: 8 pages, 2 figure

    30.4 Experimental osteoarthritis in a stable knee joint using a critical size defect in an ovine model

    Get PDF
    • …
    corecore