14,752 research outputs found
Starburst Galaxies: Hard X-ray spectra and contribution to the diffuse background
During the period of this grant two main tasks were performed: a determination of a selection criterion for starburst galaxies most likely to emit X-rays, and performance of a pilot study of the X-ray emission from nine such systems. Starburst galaxies may be expected to emit flat-spectrum X-ray at energies above 10 keV resulting from the various remnants of the short-lived massive stars which characterize the starburst. The investigation to determine the optimum sample resulted in a change from an X-ray selected (HEAO-2) sample to infrared selection based on the IRAS catalogue. A much broader sample thereby available for study, and selection could be limited to only the nearest objects and still obtain a reasonably large sample. A sample of 99 of the brightest infrared starburst galaxies was settled on for the X-ray survey. For a set of practical size, this was then reduced to a subset of 53, based on luminosity and nearness. X-ray emission from these objects was individually measured from the UCSD HEAO-1 all-sky survey in four energy bands between 13 keV to 160 keV. This data base consists of about 20 optical disk volumes. Net significance for the result was roughly two sigma, and a very hard spectral shape is indicated for the net spectrum of the surveyed galaxies. With the possibility of detection of the class, it was then felt worthwhile to examine fluxes from these sources in other archival data. This was performed with the HEAO-1 A2 data and the HEAO-2 (EINSTEIN) main archive and slew survey. Positive results were also obtained for the sample, but again at weak significance. With three independent measures of weak X-ray fluxes from nearby starburst galaxies, we wrote a letter to the Astrophysical Journal (enclosed) discussing these results and their likely significance, in particular, for the contribution to the cosmic diffuse x-ray background, perhaps as much as 25 percent
Optically induced free carrier light modulator
Signal carrier laser beam is optically modulated by a second laser beam of different frequency acting on a free carrier source to which the signal carrier laser is directed. The second laser beam affects the transmission characteristics of the free carrier source to light from the signal carrier laser, thus modulating it
Pulse ignition characterization of mercury ion thruster hollow cathode using an improved pulse ignitor
An investigation of the high voltage pulse ignition characteristics of the 8 cm mercury ion thruster neutralizer cathode identified a low rate of voltage rise and long pulse duration as desirable factors for reliable cathode starting. Cathode starting breakdown voltages were measured over a range of mercury flow rates and tip heater powers for pulses with five different rates of voltage rise. Breakdown voltage requirements for the fastest rising pulse (2.5 to 3.0 kV/micro sec) were substantially higher (2 kV or more) than for the slowest rising pulse (0.3 to 0.5 kV/micro sec) for the same starting conditions. Also described is an improved, low impedance pulse ignitor circuit which reduces power losses and eliminates problems with control and packaging associated with earlier designs
Method and apparatus for optical modulating a light signal Patent
Method and apparatus for optically modulating light or microwave bea
Langevin equation for the extended Rayleigh model with an asymmetric bath
In this paper a one-dimensional model of two infinite gases separated by a
movable heavy piston is considered. The non-linear Langevin equation for the
motion of the piston is derived from first principles for the case when the
thermodynamic parameters and/or the molecular masses of gas particles on left
and right sides of the piston are different. Microscopic expressions involving
time correlation functions of the force between bath particles and the piston
are obtained for all parameters appearing in the non-linear Langevin equation.
It is demonstrated that the equation has stationary solutions corresponding to
directional fluctuation-induced drift in the absence of systematic forces. In
the case of ideal gases interacting with the piston via a quadratic repulsive
potential, the model is exactly solvable and explicit expressions for the
kinetic coefficients in the non-linear Langevin equation are derived. The
transient solution of the non-linear Langevin equation is analyzed
perturbatively and it is demonstrated that previously obtained results for
systems with the hard-wall interaction are recovered.Comment: 10 pages. To appear in Phys. Rev.
On the Second Law of thermodynamics and the piston problem
The piston problem is investigated in the case where the length of the
cylinder is infinite (on both sides) and the ratio is a very small
parameter, where is the mass of one particle of the gaz and is the mass
of the piston. Introducing initial conditions such that the stochastic motion
of the piston remains in the average at the origin (no drift), it is shown that
the time evolution of the fluids, analytically derived from Liouville equation,
agrees with the Second Law of thermodynamics.
We thus have a non equilibrium microscopical model whose evolution can be
explicitly shown to obey the two laws of thermodynamics.Comment: 29 pages, 9 figures submitted to Journal of Statistical Physics
(2003
Macroscopic equations for the adiabatic piston
A simplified version of a classical problem in thermodynamics -- the
adiabatic piston -- is discussed in the framework of kinetic theory. We
consider the limit of gases whose relaxation time is extremely fast so that the
gases contained on the left and right chambers of the piston are always in
equilibrium (that is the molecules are uniformly distributed and their
velocities obey the Maxwell-Boltzmann distribution) after any collision with
the piston. Then by using kinetic theory we derive the collision statistics
from which we obtain a set of ordinary differential equations for the evolution
of the macroscopic observables (namely the piston average velocity and
position, the velocity variance and the temperatures of the two compartments).
The dynamics of these equations is compared with simulations of an ideal gas
and a microscopic model of gas settled to verify the assumptions used in the
derivation. We show that the equations predict an evolution for the macroscopic
variables which catches the basic features of the problem. The results here
presented recover those derived, using a different approach, by Gruber, Pache
and Lesne in J. Stat. Phys. 108, 669 (2002) and 112, 1177 (2003).Comment: 13 pages, 7 figures (revTeX4) The paper has been completely rewritten
with new derivation and results, supplementary information can be found at
http://denali.phys.uniroma1.it/~cencini/Papers/cppv07_supplements.pd
Positive Measure Spectrum for Schroedinger Operators with Periodic Magnetic Fields
We study Schroedinger operators with periodic magnetic field in Euclidean
2-space, in the case of irrational magnetic flux. Positive measure Cantor
spectrum is generically expected in the presence of an electric potential. We
show that, even without electric potential, the spectrum has positive measure
if the magnetic field is a perturbation of a constant one.Comment: 17 page
- …
