2,263 research outputs found

    Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 4: Open recuperated and bottomed gas turbine cycles

    Get PDF
    Open-cycle recuperated gas turbine plant with inlet temperatures of 1255 to 1644 K (1800 to 2500 F) and recuperators with effectiveness values of 0, 70, 80 and 90% are considered. A 1644 K (2500 F) gas turbine would have a 33.5% plant efficiency in a simple cycle, 37.6% in a recuperated cycle and 47.6% when combined with a sulfur dioxide bottomer. The distillate burning recuperated plant was calculated to produce electricity at a cost of 8.19 mills/MJ (29.5 mills/kWh). Due to their low capital cost 170to200170 to 200 /kW, the open cycle gas turbine plant should see duty for peaking and intermediate load duty

    Geographic Variation of Cirques on Iceland: Factors Influencing Cirque Morphology

    Full text link
    Cirques are one of the most common glacial landforms in alpine settings. They also provide important paleoclimate information (e.g. Meierding 1984; Evans 2006). The purpose of this study is to fill in gaps in the climate record of Iceland by conducting a quantitative analysis of cirques in three regions in Iceland: Tröllaskagi, the East Fjords, and Vestfirðir. Iceland, located in the center of the North Atlantic Ocean, contains many small glaciers, in addition to large ice caps. The glaciers on Iceland are particularly sensitive to variations in oceanic and atmospheric circulation (Andresen et al. 2005; Geirsdóttir et al., 2009; Ólafsdóttir et al. 2010). Iceland thus provides an excellent case study to examine factors influencing glacial landforms such as cirques. (excerpt

    Observation of Buried Phosphorus Dopants near Clean Si(100)-(2x1) with Scanning Tunneling Microscopy

    Full text link
    We have used scanning tunneling microscopy to identify individual phosphorus dopant atoms near the clean silicon (100)-(2x1) reconstructed surface. The charge-induced band bending signature associated with the dopants shows up as an enhancement in both filled and empty states and is consistent with the appearance of n-type dopants on compound semiconductor surfaces and passivated Si(100)-(2x1). We observe dopants at different depths and see a strong dependence of the signature on the magnitude of the sample voltage. Our results suggest that, on this clean surface, the antibonding surface state band acts as an extension of the bulk conduction band into the gap. The positively charged dimer vacancies that have been observed previously appear as depressions in the filled states, as opposed to enhancements, because they disrupt these surface bands.Comment: 4 pages, 3 figures. TeX for OSX from Wierde

    A phylogenetic study of the Lecanora rupicola group (Lecanoraceae, Ascomycota)

    Get PDF
    A molecular phylogeny of the Lecanora rupicola group is presented, based on ITS sequence analyses. The study includes saxicolous and corticolous members of the Lecanora rupicola group as well as other Lecanora species with pruinose apothecia. A phylogenetic hypothesis for species in Lecanora s. lat. and various other genera in Lecanoraceae, based on an alignment-free distance estimation technique, shows that the Lecanora rupicola group forms a monophyletic clade within Lecanoraceae. Affinities to the core group of Lecanora are not well supported, likewise the monophyly of Lecanora s. str. with other species groups in Lecanora, such as the lobate taxa (and Rhizoplaca) is not supported. A more detailed analysis involving Lecanora species with pruinose apothecial discs was carried out with model-based Bayesian Markov chain Monte Carlo (B/MCMC) tree sampling. The results suggest the monophyly of the Lecanora species that are characterized by the presence of chromones. Corticolous as well as saxicolous species are included. Lepraria flavescens is closely related to the Lecanora swartzii subgroup, and the new name Lecanora rouxii nom. nov. is introduced for that species. Other Lecanora species with pruinose discs are riot closely related to the Lecanora rupicola group

    The basal ganglia in perceptual timing: timing performance in Multiple System Atrophy and Huntington's disease.

    Get PDF
    The timing of perceptual events depends on an anatomically and functionally connected network comprising basal ganglia, cerebellum, pre-frontal cortex and supplementary motor area. Recent studies demonstrate the cerebellum to be involved in absolute, duration-based timing, but not in relative timing based on a regular beat. Conversely, functional involvement of the striatum is observed in relative timing, but its role in absolute timing is unclear. This work tests the specific role of the basal ganglia in the perceptual timing of auditory events. It aims to distinguish the hypothesised unified model of time perception (Teki, Grube, & Griffiths, 2012), in which the striatum is a mandatory component for all timing tasks, from a modular system in which they subserve relative timing, with absolute timing processed by the cerebellum. Test groups comprised individuals with Multiple System Atrophy, a disorder in which similar pathology can produce clinical deficits associated with dysfunction of the cerebellum (MSA-C, n = 8) or striatum (MSA-P, n = 10), and early symptomatic Huntington's disease (HD, n = 14). Individuals with chronic autoimmune peripheral neuropathy (n = 11) acted as controls. Six adaptive tasks were carried out to assess perceptual thresholds for absolute timing through duration discrimination for sub- and supra-second time intervals, and relative timing through the detection of beat-based regularity and irregularity, detection of a delay within an isochronous sequence, and the discrimination of sequences with metrical structure. All three patient groups exhibited impairments in performance in comparison with the control group for all tasks, and severity of impairment was significantly correlated with disease progression. No differences were demonstrated between MSA-C and MSA-P, and the most severe impairments were observed in those with HD. The data support an obligatory role for the basal ganglia in all tested timing tasks, both absolute and relative, as predicted by the unified model. The results are not compatible with models of a brain timing network based upon independent modules

    Deficits in Auditory Rhythm Perception in Children With Auditory Processing Disorder Are Unrelated to Attention

    Get PDF
    Auditory processing disorder (APD) is defined as a specific deficit in the processing of auditory information along the central auditory nervous system, including bottom-up and top-down neural connectivity. Even though music comprises a big part of audition, testing music perception in APD population has not yet gained wide attention in research. This work tests the hypothesis that deficits in rhythm perception occur in a group of subjects with APD. The primary focus of this study is to measure perception of a simple auditory rhythm, i.e., short isochronous sequences of beats, in APD children and to compare their performance to age-matched normal controls. The secondary question is to study the relationship between cognition and auditory processing of rhythm perception. We tested 39 APD children and 25 control children aged between 6 and 12 years via (a) clinical APD tests, including a monaural speech in noise test, (b) isochrony task, a test measuring the detection of small deviations from perfect isochrony in a isochronous beats sequence, and (c) two cognitive tests (auditory memory and auditory attention). APD children scored worse in isochrony task compared to the age-matched control group. In the APD group, neither measure of cognition (attention nor memory) correlated with performance in isochrony task. Left (but not right) speech in noise performance correlated with performance in isochrony task. In the control group a large correlation (r = −0.701, p = 0.001) was observed between isochrony task and attention, but not with memory. The results demonstrate a deficit in the perception of regularly timed sequences in APD that is relevant to the perception of speech in noise, a ubiquitous complaint in this condition. Our results suggest (a) the existence of a non-attention related rhythm perception deficit in APD children and (b) differential effects of attention on task performance in normal vs. APD children. The potential beneficial use of music/rhythm training for rehabilitation purposes in APD children would need to be explored

    Subthalamic deep brain stimulation in Parkinson׳s disease has no significant effect on perceptual timing in the hundreds of milliseconds range.

    Get PDF
    Bilateral, high-frequency stimulation of the basal ganglia (STN-DBS) is in widespread use for the treatment of the motor symptoms of Parkinson׳s disease (PD). We present here the first psychophysical investigation of the effect of STN-DBS upon perceptual timing in the hundreds of milliseconds range, with both duration-based (absolute) and beat-based (relative) tasks; 13 patients with PD were assessed with their STN-DBS 'on', 'off', and then 'on' again. Paired parametric analyses revealed no statistically significant differences for any task according to DBS status. We demonstrate, from the examination of confidence intervals, that any functionally relevant effect of STN-DBS on relative perceptual timing is statistically unlikely. For absolute, duration-based timing, we demonstrate that the activation of STN-DBS may either worsen performance or have no effect, but that it is unlikely to lead to significant improvement. Although these results are negative they have important implications for our understanding of perceptual timing and its relationship to motor functions within the timing network of the brain. They imply that the mechanisms involved in the perceptual processing of temporal information are likely to be functionally independent from those that underpin movement. Further, they suggest that the connections between STN and the subtantia nigra and globus pallidus are unlikely to be critical to beat-based perceptual timing
    • …
    corecore