
Subthalamic deep brain stimulation in Parkinson's disease has no
significant effect on perceptual timing in the hundreds of
milliseconds range

Thomas E. Cope a,n, Manon Grube a,1, Arnab Mandal a,2, Freya E. Cooper a,3, Una Brechany b,
David J. Burn b, Timothy D. Griffiths a

a Auditory Group, Institute of Neuroscience, Newcastle University, Newcastle-upon-Tyne, United Kingdom
b Institute for Ageing and Health, Newcastle University, Newcastle-upon-Tyne, United Kingdom

a r t i c l e i n f o

Article history:
Received 9 July 2013
Received in revised form
20 February 2014
Accepted 22 February 2014
Available online 5 March 2014

Keywords:
Perceptual timing
Parkinson's disease
Subthalamic nucleus
Deep brain stimulation

a b s t r a c t

Bilateral, high-frequency stimulation of the basal ganglia (STN-DBS) is in widespread use for the
treatment of the motor symptoms of Parkinson's disease (PD). We present here the first psychophysical
investigation of the effect of STN-DBS upon perceptual timing in the hundreds of milliseconds range,
with both duration-based (absolute) and beat-based (relative) tasks; 13 patients with PD were assessed
with their STN-DBS ‘on’, ‘off’, and then ‘on’ again.

Paired parametric analyses revealed no statistically significant differences for any task according to
DBS status. We demonstrate, from the examination of confidence intervals, that any functionally relevant
effect of STN-DBS on relative perceptual timing is statistically unlikely. For absolute, duration-based
timing, we demonstrate that the activation of STN-DBS may either worsen performance or have no effect,
but that it is unlikely to lead to significant improvement.

Although these results are negative they have important implications for our understanding of
perceptual timing and its relationship to motor functions within the timing network of the brain. They
imply that the mechanisms involved in the perceptual processing of temporal information are likely to be
functionally independent from those that underpin movement. Further, they suggest that the connec-
tions between STN and the subtantia nigra and globus pallidus are unlikely to be critical to beat-based
perceptual timing.
& 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/3.0/).

1. Introduction

1.1. Deep brain stimulation of the subthalamic nucleus (STN-DBS)

1.1.1. DBS as a treatment for Parkinson's disease (PD)
Parkinson's disease is a degenerative disorder of the central

nervous system characterised by the loss of the dopaminergic
neurones of the substantia nigra. This results in a clinical syn-
drome of rigidity, bradykinesia, postural instability, gait distur-
bance and, often, tremor. Pharmacological therapy focusses

primarily on the replacement or modulation of disordered dopa-
minergic transmission. Bilateral stimulation of the basal ganglia is
now a widely implemented treatment for patients with PD whose
treatment with dopaminergic therapy is limited by short duration
of benefit or dyskinetic side effects (for a review, see (Perlmutter &
Mink, 2006)). The main targets for this stimulation are the
subthalamic nucleus (STN) (Limousin et al., 1995) and the internal
segment of the globus pallidus (GPi) (Pahwa et al., 1997). While
DBS of either of these nuclei equally reduces the motor manifesta-
tions of PD, STN has become the clinically preferred target as it has
been demonstrated to be more likely to allow a reduction in
dopaminergic drug use (Anderson, Burchiel, Hogarth, Favre, &
Hammerstad, 2005; Rodriguez-Oroz, Matsubara, Clavero, Guridi,
& Obeso, 2009). DBS of GPi is now generally reserved for patients
with particular difficulties with dystonia (Kern & Kumar, 2007) or
mood (Burdick et al., 2011; Okun et al., 2009; Trepanier, Kumar,
Lozano, Lang, & Saint-Cyr, 2000). Once a patient with PD has
stabilised with long term STN-DBS, changes in stimulator state are
rapidly reflected in clinical effect; turning stimulation ‘off’ causes a
rapid recrudescence of symptoms, which are quickly relieved by
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turning it back ‘on’. This is in contrast to the treatment of disorders
such as dystonia, where clinical benefit can take many weeks to
appear, and symptoms typically reappear slowly once stimulation
is stopped.

1.1.2. Cortical and sub-cortical effect of STN-DBS
Despite its widespread clinical uptake, the mechanism of action

of DBS is poorly understood. While high-frequency DBS mimics
the functional effect of ablation (Breit, Schulz, & Benabid, 2004),
there is emerging evidence to suggest that this is achieved through
stimulation-induced modulation of brain network activity
(Kringelbach, Jenkinson, Owen, & Aziz, 2007). The STN is directly
and indirectly anatomically interconnected with a number of brain
areas that are involved in the control of movement, cognition and
mood (Benarroch, 2008; Hamani, Saint-Cyr, Fraser, Kaplitt, &
Lozano, 2004; Nambu, Tokuno, & Takada, 2002). Although the
distribution of its connections allows STN to be anatomically
segregated into subregions designated limbic (medial; behavioural
and emotional functions), associative (ventromedial; oculomotor
and cognitive functions) and motor (dorsolateral), these areas are
functionally interconnected (Mallet et al., 2007). These properties
give STN-DBS the potential to directly affect the function of
distributed cortical and sub-cortical networks.

For the initial decades after its introduction, there was reluc-
tance to employ functional magnetic resonance imaging for
research purposes in patients with DBS due to concerns about
electrode heating and displacement, but since demonstrations of
the safe use of this technique (Jech et al., 2001; Rezai et al., 1999) a
number of studies have investigated the effects of STN-DBS on
regional brain activity. Consistent increases in activation at rest
with unilateral STN-DBS have been demonstrated in ipsilateral
putamen, thalamus and supplementary motor area, as well as
contralateral cerebellum (Phillips et al., 2006; Stefurak et al.,
2003). Further, positron emission tomography (PET) studies inves-
tigating task-dependant changes in regional cerebral blood flow in
patients with PD demonstrated an increase in blood flow to
supplementary motor cortex and supplementary motor area dur-
ing a paced motor task with STN-DBS activated (Ceballos-
Baumann et al., 1999).

1.2. The neural basis for the perceptual processing of temporal
information

The human auditory system is capable of extracting behaviou-
rally relevant temporal features of sound over six orders of
magnitude, from the sub-millisecond level relevant to source
localisation and pitch processing to the level of seconds and tens
of seconds for the processing of sentences and ‘streams’ of sounds
(Bregman, 1990; Mauk & Buonomano, 2004). This is performed by
hierarchically organised mechanisms, in which longer time win-
dows are processed sequentially further from primary auditory
cortex (Cope, Sedley, & Griffiths, 2011; Poeppel, 2003).

The representation of time at and beyond the level of hundreds
of milliseconds relies on at least one central mechanism, which is
often described as an internal clock (Ivry & Schlerf, 2008;
Treisman, 1963). Brain areas implicated in the processing of
temporal information at this level include the cerebellum (Ivry,
1993; Ivry & Keele, 1989), basal ganglia (Gibbon, Malapani, Dale, &
Gallistel, 1997; Grahn & Brett, 2007; Grahn & Rowe, 2009, 2013;
Harrington, Haaland, & Hermanowicz, 1998; Meck & Benson,
2002), supplementary motor area (Halsband, Ito, Tanji, & Freund,
1993; Macar, Anton, Bonnet, & Vidal, 2004) and pre-frontal cortex
(Lewis & Miall, 2003, 2006; Oshio, 2011; Oshio, Chiba, & Inase,
2008). The interconnections between these areas have been
demonstrated both anatomically (Akkal, Dum, & Strick, 2007;

Bostan, Dum, & Strick, 2010; Bostan & Strick, 2010; Hoshi,
Tremblay, Feger, Carras, & Strick, 2005; Jurgens, 1984) and func-
tionally, during the performance of timing tasks (Chen, Zatorre, &
Penhune, 2006; Grahn & Rowe, 2009).

1.2.1. Absolute, duration-based vs relative, beat-based timing
While there are undoubtedly further complexities, and room

for sub-division, in recent years it has become evident that there is
a difference in the neural substrate responsible for the processing
of absolute time, where the durations of two single intervals are
compared, and relative time, where comparative judgments of
duration are made based on a regular beat (Keele, Nicoletti, Ivry, &
Pokorny, 1989; McAuley & Jones, 2003; Teki, Grube, Kumar, &
Griffiths, 2011). Perceptual timing performance in normal indivi-
duals is superior when relative, beat-based information is present
(Essens & Povel, 1985; Grube, Cooper, Chinnery, & Griffiths, 2010a;
Grube & Griffiths, 2009; Hirsh, Monahan, Grant, & Singh, 1990;
Monahan & Hirsh, 1990).

1.2.2. The role of the cerebellum
Recent work supports an obligatory role for the cerebellum in

the perceptual processing of absolute but not relative timing;
patients with spinocerebellar ataxia type 6, a stereotyped cere-
bellar degeneration, were specifically impaired relative to controls
when asked to compare the absolute duration of discrete intervals
(Grube et al., 2010a), a finding consistent with previous investiga-
tions of the role of the cerebellum in duration estimation
(Harrington, Lee, Boyd, Rapcsak, & Knight, 2004; Ivry & Keele,
1989). This impairment was especially marked when interval
duration was roved between trials to minimise overall temporal
context, and was absent when a regular beat was present to allow
for relative comparison. Congruent results have been obtained in a
cohort of neurologically normal subjects in whom transcranial
magnetic stimulation (TMS) was applied to the medial cerebellum
(Grube, Lee, Griffiths, Barker, & Woodruff, 2010b).

1.2.3. The role of the basal ganglia
In functional imaging studies the basal ganglia have been

strongly implicated in the analysis of relative, beat-based timing
(Gibbon et al., 1997; Grahn & Brett, 2007; Grahn & McAuley, 2009;
Meck & Benson, 2002; Teki et al., 2011). A physiological mechan-
ism for this function is formulated in the Striatal Beat Frequency
model, in which a timing signal is generated by a striato-thalamo-
cortical circuit (Meck, Penney, & Pouthas, 2008; Oprisan & Buhusi,
2011). It is proposed that the medium spiny neurons in the dorsal
striatum act as coincidence detectors for oscillatory activity
(Matell & Meck, 2004; Miall, 1989) and that the periodicity of
the oscillator is regulated by dopaminergic input from the sub-
stantia nigra (Allman & Meck, 2012; Buhusi & Meck, 2005; Oprisan
& Buhusi, 2011).

1.2.4. A unified model of time perception
The ‘unified model of time perception’ proposes that time

intervals can be encoded as a combination of a learned, cyclically
occurring duration, represented by the basal ganglia through the
Striatal Beat Frequency, and an error-correction, supplied by the
olivocerebellar network (Teki, Grube, & Griffiths, 2012). This model
is supported by recent work demonstrating that patients with
intrinsic damage to the striatum (from Huntington's disease and
Multiple System Atrophy) are significantly impaired in their ability
to perform both absolute and relative perceptual timing tasks
(Cope, Grube, Singh, Burn, & Griffiths, 2014).
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1.3. Timing in Parkinson's disease (PD)

While there is generalised neuronal degeneration, the dysfunc-
tion in PD is not primarily degeneration of the striatum, but rather
an uneven loss of its dopaminergic input (Kish, Shannak, &
Hornykiewicz, 1988). Tasks of timing have been extensively
assessed in patients with PD (for recent comprehensive reviews
see (Allman & Meck, 2012) and (Jones & Jahanshahi, 2014)). When
perceptual timing has been assessed in isolation, patients with PD
have been found to be impaired on tasks based on a regular beat,
but not on those without (Grahn & Brett, 2009). The majority of
studies have used tasks with motor confounds, such as tapping out
rhythms or reproducing single-interval durations. In general, the
findings of the perceptual studies can be attributed to a decrease
in the speed of the internal clock (Harrington et al., 1998),
especially when medication was withdrawn (Artieda, Pastor,
Lacruz, & Obeso, 1992; Jones, Malone, Dirnberger, Edwards, &
Jahanshahi, 2008; O'Boyle, Freeman, & Cody, 1996; Pastor, Artieda,
Jahanshahi, & Obeso, 1992). Similar decreases in internal clock
speed can be demonstrated in both rats and humans exposed to
dopamine blockade, while increases occur with exposure to
dopamine agonists (Buhusi & Meck, 2002; Cheng, Hakak, &
Meck, 2007; MacDonald & Meck, 2005; Meck, 1983, 1986).

1.4. Timing in STN-DBS

The only prior assessment of the effect of STN-DBS on auditory
temporal processing was performed by Guehl et al. (2008). They
examined the perceptual abilities of patients with PD to detect a
gap (of o10 ms) within a constant stimulus, to compare the
duration of single intervals against a fixed reference of 50 ms; to
detect extra gaps inserted within an otherwise isochronous
sequence of clicks presented at 20 Hz; and to detect signals
repeated at 2, 16 and 256 Hz within a white noise background.
The effects of medication (administered at just under half of
patients’ pre-stimulation, therapeutic dose) and STN-DBS on these
abilities were assessed. Overall, a statistically significant improve-
ment in performance was demonstrated when the patients were
receiving both medication and STN-DBS stimulation compared to
when both treatments were withheld, but no significant differences
were demonstrated between medication-alone and medication plus
STN-DBS. No task by group interaction was demonstrated, but there
was a trend for STN-DBS to lead to a more significant improvement
in auditory gap detection and deviation from isochrony than in the
comparison of single intervals.

While the discrimination of single intervals and detection of
gaps in isochronous sequences is conceptually similar to our tasks
presented below, Guehl et al. (2008) exclusively assessed percep-
tual timing below 100 ms, and the isochronous stimulus com-
prised clicks presented at 20 Hz (an inter-onset-interval of 50 ms).
Although the authors interpret their results as evidence against
changes in PD of the periodicity of an underlying pacemaker, it is
questionable whether such a mechanism would be engaged at
these brief timescales. Human sensitivity to changes in duration
increases up to around 200 ms, above which the Weber fraction is
relatively constant to at least 800 ms (Drake, Botte, & Baruch,
1992; Drake & Botte, 1993; Grondin, 2010; Mauk & Buonomano,
2004). Recent EEG studies elegantly demonstrate that neuronal
entrainment to rhythmic stimuli preferentially occurs below 5 Hz,
even when the underlying periodicity or metre of the stimulus
exceeds this (Nozaradan, Peretz, & Mouraux, 2012).

Koch et al. (2004) tested the effect of STN-DBS on the
reproduction of single time intervals of 5 and 15 s. In line with
previous work (Malapani et al., 1998), the authors demonstrated
that patients with untreated PD consistently over-estimate the
shorter interval and under-estimate the longer interval. This effect

can be explained by a deviation of subjects’ point of subjective
equality towards the overall temporal context of the experiment
(McAuley & Miller, 2007; Miller & McAuley, 2005), and reflects
a complex interplay of perceptual timing, memory and decision
making. The administration of either STN-DBS or dopaminergic
medication was sufficient to reduce this effect, but STN-DBS had
no further effect on patients who were dopamine-replete. In
contrast, Wojtecki et al. (2011) demonstrated that STN-DBS at
10 Hz (therapeutic STN-DBS is usually administered at or above
130 Hz) exacerbated these consistent errors, and replicated the
beneficial effect of therapeutic STN-DBS. It is unclear how these
results relate directly to the perception of time at the level of
hundreds of milliseconds, a temporal region in which patients
with PD do not show this “migration” effect (Koch et al., 2008).

STN-DBS has been demonstrated to improve rhythmic motor
performance in patients with PD (Joundi, Brittain, Green, Aziz, &
Jenkinson, 2012). This study employed the synchronisation-
continuation repetitive tapping task (Wing & Kristofferson, 1973),
upon which patients with PD have previously demonstrated poor
performance (see (Jahanshahi, Jones, Dirnberger, & Frith, 2006)
and (Wild-Wall, Willemssen, Falkenstein, & Beste, 2008) for over-
views). STN-DBS improved performance almost to the level of
control participants, and this was attributed to a reduction in the
variance of a central clock generator. These findings, combined
with demonstrations that DBS of the internal globus pallidus (Gpi-
DBS) improves the precision of internally but not externally timed
movements (Schenk, Baur, Steude, & Botzel, 2003), suggest that
DBS can be an important regulator of motor timing, and make the
examination of its effect on perceptual timing a pressing concern.

1.5. Study aims

This study aims to assess the effect of STN-DBS on duration-
and beat-based perceptual timing abilities of patients with PD at
the level of hundreds of milliseconds, an area of high temporal
acuity. As described above, patients with PD are known to be
impaired relative to controls on tasks of relative timing, consistent
with a slowing of the internal clock. These difficulties are reduced,
but not eliminated, by dopaminergic replacement. STN-DBS
improves the motor symptoms of PD through modulation of brain
network activity rather than direct stimulatory input – it is
therefore difficult to predict whether it would aid or disrupt basal
ganglia perceptual timing functions.

2. Methods

2.1. Subjects

Thirteen patients with idiopathic PD (4 female), treated with bilateral STN-DBS
were recruited at least 6 months after the stabilisation of therapeutic stimulation.
All were right handed, and none had any musical training. Demographic and
neuropsychometric data are displayed in Table 1, and STN-DBS stimulation
parameters are displayed in Table 2. Approval for study conduct was gained from
the local research ethics committee and the hospital governance board. All subjects
provided informed consent for participation.

2.2. Stimuli

All stimuli were constructed from pure tones of 100 ms duration including
20 ms raised cosine onset and offset ramps, with a frequency of 200 Hz and
presented at a default volume of 75 dB SPL. If patients reported difficulty in hearing
the stimuli clearly or found them uncomfortably loud, they were allowed to adjust
the volume of stimulus presentation to their own preference. Stimuli were
generated digitally in real time using Matlab 6.5 and Cogent 2000, which was
developed by the Cogent 2000 team at the FIL and the ICN and is a toolbox
designed for presenting stimuli with precise timing, and presented diotically
through external Edirol UA-4X soundcards and Sennheiser HD 250 headphones.
Subjects were tested individually in a quiet room.

T.E. Cope et al. / Neuropsychologia 57 (2014) 29–37 31



2.3. Procedure

The general procedure for the experiment was as described in (Grube et al.,
2010a), except that all subjects undertook each test of perceptual timing three
times. Each test was first administered with STN-DBS stimulation “on” at the
patients’ usual therapeutic level. STN-DBS stimulation was then turned “off”, and
after 5 min without stimulation, subjects undertook the same test again. STN-DBS
was thereafter turned “on” again, and after 5 min with stimulation reinstated,
subjects undertook the same test a third time. Tests were performed in the order
given below. No changes were made to patients’ usual doses of dopaminergic
medication.

2.4. Tasks

The tasks are illustrated schematically in Fig. 1. All tasks used an adaptive, two
alternative forced-choice procedure to determine perceptual thresholds. Tasks are
briefly outlined below, but are described in detail in (Grube et al., 2010a). The only
differences to the protocol used by Grube et al. (2010b) were that the fixed-interval
timing task (Fix) was omitted here, and that additional constraints were placed
upon the stimulus generation in the tasks of regular pulse detection such that: the
total amount of jitter could never be larger in the target than the reference and was
always between 80% and 120% of the intended jitter difference; sequences could
not contain more than three shortened or lengthened intervals in a row, or be
comprised of primarily shortened or lengthened intervals. To reflect these differ-
ences, the short title for this task has been redesignated (Pul), from (Reg) used by
Grube et al. (2010b).

Breaks were provided between tasks, and at the half-way stage (after the
second of the four timing tasks) cognitive testing was undertaken. This comprised

the Wechsler Test of Adult Reading (WTAR), an assessment of forwards and
backwards digit span, and a Revised Addenbrooke's Cognitive Examination (ACE-
R) (Mioshi, Dawson, Mitchell, Arnold, & Hodges, 2006), from which the fluency
component was discarded due to the confound of slowed and impaired speech in
patients with PD and STN-DBS.

2.4.1. Absolute, duration-based timing
2.4.1.1. Variable interval timing (Var). This task was based on two separated sub-
second intervals, and subjects were asked to distinguish a longer target from a
shorter reference. Reference inter-onset-interval durations were randomly roved
between trials from 300 to 600 ms in 60 ms steps.

2.4.2. Relative, beat-based timing
2.4.2.1. Detection of regularity, or pulse, within an irregular sequence (Pul). In this
task, subjects were asked to distinguish a target sequence, containing a degree of
underlying regularity, from a completely irregular reference sequence. Both sequ-
ences consisted of 11 tones presented over 4.5 s and based on a regular 400 ms
beat. The reference sequence was rendered highly irregular by randomly short-
ening or lengthening each interval by an average of 30% (range 15–45%), making
the underlying beat imperceptible (Madison & Merker, 2002). A similar procedure
was applied to the target sequence, but the mean jitter in this sequence began at 0%
(perfect isochrony). During the task, this value was adaptively controlled in steps of
4% for the first four turnpoints and 2.5% thereafter, but could never exceed the jitter
of the reference.

2.4.2.2. Detection of deviation from isochrony (Iso). This task used a 5-tone iso-
chronous reference sequence with a 300 ms inter-onset interval, against which

Table 1
Demographic and neuropsychometric data for patients with PD and bilateral STN-DBS. Pre-morbid full scale IQ (PMFSIQ) was estimated with the Wechsler Test of Adult
Reading (WTAR), which has been demonstrated to give comparable results in PD and healthy controls (Dalrymple-Alford et al., 2011). MMSE¼Mini mental state
examination. ACE-R¼Addenbrooke's cognitive examination, revised edition. The fluency component has been excluded from the ACE-R, resulting in a maximum score of 86,
because of the significant slowing of speech in patients with PD and STN-DBS.

Subject
number

Age Sex Years since PD
diagnosis

Years since STN-
DBS implanted

Estimated
PMFSIQ

MMSE
(max 30)

ACE-R minus
fluency
(max 86)

1 55 M 10 7 92 30 81
2 55 M 11 4 113 30 82
3 51 M 9 2 106 29 80
4 56 M 10 3 120 30 86
5 50 F 5 2 104 30 78
6 75 F 8 5 108 30 77
7 64 M 16 7 123 29 82
8 57 M 15 5 108 30 86
9 57 M 29 2 96 29 77
10 64 M 11 3 97 30 76
11 72 F 21 2 90 30 79
12 65 M 15 4 103 29 79
13 61 F 23 4 106 30 82
Median 57 11 4 106 30 80

Table 2
STN-DBS stimulation parameters for patients with PD. Stimulation frequency is expressed in Hertz, stimulation amplitude in volts, and pulse width in microseconds.

Subject number Left Right

Stimulation frequency Stimulation amplitude Pulse width Stimulation frequency Stimulation amplitude Pulse width

1 160 3.1 90 160 5.2 60
2 130 4.0 90 130 4.0 60
3 145 5.0 120 145 4.0 90
4 130 3.8 60 130 3.8 60
5 130 4.1 60 130 4.1 60
6 170 3.3 60 170 2.0 90
7 137 3.3 60 137 3.0 60
8 155 4.9 60 155 4.2 60
9 130 3.8 60 130 3.9 60
10 157 3.3 90 157 3.9 60
11 130 2.4 60 130 2.9 60
12 130 3.7 90 130 3.9 90
13 130 3.9 60 130 3.8 60
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subjects had to discriminate a target sequence with a lengthening of the third inter-
onset interval (preceding the 4th tone).

2.4.2.3. Detection of disruption of a metrical pattern (Met). In this task, subjects were
asked to identify a target sequence in which the rhythmic pattern of a strongly
metrical, seven-tone sequence was disrupted. The sequence was based upon two
levels of periodicity; a lower level periodicity of 180–220 ms and a higher level
metrical beat of four, formed by the regular occurrence of temporally induced ac-
cents on every fourth beat (every 800 ms on average) (Grube & Griffiths, 2009;
Povel & Essens, 1985). The target sequence was adaptively disrupted by a balanced
change in the length of the longer silent intervals (two were lengthened and two
were shortened by an equal proportion), while the shorter silent intervals were
unchanged. The amount of distortion was adaptively controlled, starting at 65% and
changed in steps of 12% for the first four turnpoints and 6% thereafter.

2.5. Statistical analysis

Patients acted as their own controls, with all analyses based on paired
comparisons between their performance on each of the three repetitions of each
test. The distribution of these data was explored in IBM SPSS Version 19 by the
Kolmogorov-Smirnov test with Lillefors significance correction; performance
differences did not deviate significantly from a normal distribution. Mauchly's test
of sphericity confirmed that variance could be assumed to be equal between
comparison pairs. Differences were therefore suitable for assessment with quanti-
tative statistics, and specifically by analysis of variance (ANOVA).

3. Results

Threshold performance was measured by adaptive tracking of
thresholds for all four perceptual timing tasks (Var, Reg, Iso, Met)
with DBS ‘on’ (On1), ‘off’ (Off) and then ‘on’ again (On2). Illus-
trative boxplots for the group threshold data are displayed in
Fig. 2. Supplementary Fig. S1 illustrates the patient threshold data
compared to a group of age-matched, healthy control participants
– these data are briefly discussed in appendix A.

Each subject's threshold in each of these conditions was
compared to assess any consistent difference in performance
according to DBS status (Fig. 3). If there were a consistent
improvement in performance with DBS ‘on’ we would expect both
the first and third measures (On1 – Off) and (On2 – Off) to be
below zero, while a consistent deterioration in performance would
result in them being above zero. In each case, the middle
measurement (On1 – On2) should still approximate to zero, unless
there were a significant effect of practice, fatigue or the timing of
testing relative to medication doses. All confidence intervals for

the means of differences include zero, except the third measure
(On2 – Off) in test Var, which extends from 0.68% to 18%. A
balanced ANOVA of differences demonstrated no significant effect
of DBS status (p¼0.569) or test (p¼0.084). Although there was no
prior hypothesis for a differential effect of DBS on test Var, a
confirmatory one way ANOVA was performed for this condition,
which again demonstrated no significant difference according to
DBS status p¼0.128).

Because of the widespread cortical projection of the STN, and
the inevitable variation in electrode position within this small
structure, it was hypothesised that DBS might impact upon
perceptual timing in an inconsistent way between subjects (i.e.
some individuals might improve and others get worse). In order to
investigate this, the absolute (unsigned) difference in thresholds
was calculated between each run pair for each task (Fig. 4). The
(On1 – On2) comparison was again included for comparison as a
measure of inter-run variability due to practice or fatigue. In this

Fig. 2. Illustrative boxplots of measured thresholds by task and DBS status. Box
denotes inter-quartile range, central line denotes median, whiskers describe the
range of all measures within two standard deviations, and asterisks denote outliers.
Threshold is expressed as a percentage difference in inter-onset interval for tasks
Var, Isoc and Met, and as percentage jitter difference for task Pul (the reference
sequence always had 30% jitter, so the absolute jitter value at which regularity
could be detected can be derived by subtracting the threshold presented from 30).
Higher values denote poorer performance.

Fig. 1. Schematic illustration of stimuli for the tasks of perceptual timing.
Horizontal lines depict tones (200 Hz, 100 ms). In each case the reference stimulus
is shown above the initial target stimulus. As each run progressed, the target
stimulus was adaptively controlled to be increasingly similar to the reference
stimulus, dependent on participant performance. (A) Var: sub-second variable-
interval discrimination. (B) Pul: detection of regularity (pulse, or beat) within an
irregular sequence. (C) Iso: detection of deviation from isochrony. (D) Met:
detection of the disruption of a sequence with strong metrical structure.

Fig. 3. Paired difference in performance thresholds by DBS status, expressed as
percentage of inter-onset-interval for tasks Var, Isoc and Met, and percentage jitter
for Pul. The first and third measures within each triplet show performance for each
run with DBS ‘on’ (run 1&3) compared to that with DBS ‘off’ (run 2); values greater
than zero denote a deterioration in performance with DBS ‘on’ compared to ‘off’,
while those less than zero denote an improvement in performance in ‘on’
compared to ‘off’. The middle measure shows the difference in performance
between the two runs with DBS ‘on’. Error bars denote confidence interval, and
symbols the group mean.
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figure, if DBS significantly impacted upon performance in an
inconsistent manner, the first (On1 – Off) and third (On2 – Off)
values would both be significantly greater than the second (On1 –

On2) for the affected task. Four of these values follow this pattern
and four do not, and none of the differences are large.
Confidence intervals for all (On1 – On2) comparisons encompass
the means of all (On – Off) comparisons for each test and no
statistically significant differences were found on one way ANOVAs
performed for each test individually.

4. Discussion

4.1. The lack of an effect of STN-DBS: absence of evidence or evidence
of absence?

No significant difference in the performance of any task was
found when STN-DBS was turned ‘off’, nor when it was turned
back ‘on’. This could be simply interpreted as a lack of influence of
STN-DBS on perceptual timing, especially as the same or similar
perceptual tasks have previously proven sufficiently sensitive to
detect perceptual timing difficulties in patients with cerebellar
disease or inactivation (Grube et al., 2010a, 2010b) and basal
ganglia disease (Cope et al., 2014), without the statistical benefit
of within-subject comparison. It is a basic tenant of statistical
theory, however, that absence of evidence is not evidence of
absence. One might therefore argue that the inclusion of a large
enough number of patients might increase statistical power
sufficiently to find statistically significant differences. It is impos-
sible to demonstrate from our data that this is not the case, but it is
possible to demonstrate that the magnitude of this difference
would be unlikely to be functionally relevant, through the exam-
ination of confidence intervals (Blackwelder, 1982; Streiner, 2003).

For the detection of regularity within an irregular sequence
(Pul), the largest differences in thresholds described by the 95%
confidence intervals in Fig. 3 are 2.6% and �3.5%. With STN-DBS
‘on’, the group median threshold indicated that patients were able
to detect the underlying regular beat in the presence of a jitter of
14.3%. In other words, turning ‘off’ STN-DBS would at best improve
performance such that, on average, patients could detect regular-
ity in a sequence with up to 16.9% jitter, and at worst impair it so
that regularity was only detectable in the presence of up to 10.8%
jitter. Similarly for task Iso, turning ‘off’ STN-DBS would at best

reduce the minimum amount of deviation from isochrony required
for its detection from 11.6% to 9.8%, and at worst increase it to
16.4%. Finally, for the task based upon metrical rhythms (Met),
turning ‘off’ STN-DBS would at best reduce the minimum detect-
able amount of sequence disruption from 20.5% to 16.9% and at
worst increase it to 27.5%. Although any consistent effect upon
relative, beat-based timing thresholds would arguably be of
scientific interest, we would attest that these potential changes
are sufficiently small to conclude that bilateral disruption of the
subthalamic nucleus with deep brain stimulation does not have a
profound effect upon the performance of perceptual tasks of
relative timing.

Such a clear conclusion cannot be reached for the perceptual
task of absolute timing employed here. Although no statistically
significant difference was demonstrated, the confidence intervals
indicate that turning STN-DBS ‘off’ could have improved average
thresholds by as much as 17.9%, while it is statistically unlikely that
it worsened them by more than 2.8%. In other words, it is
statistically plausible that the median minimum detectable differ-
ence in the length of two single intervals could improve from
39.5% in patients with PD with STN-DBS turned ‘on’ to 21.6% in the
same patients with STN-DBS turned ‘off’. This would represent
almost a halving of temporal acuity due to the introduction of
STN-DBS. Similarly, it is statistically plausible that the STN-DBS
had no effect, or even that it could slightly improve performance,
as the worst plausible ‘off’ threshold was 42.3%. Guehl et al. (2008)
also demonstrated no change in performance in the timing of
single intervals with STN-DBS state, but it is difficult to compare
these data to ours as the intervals tested were an order of
magnitude more brief, and the duration of the comparison interval
was fixed at 50 ms, rather than being roved from trial to trial. We
can therefore draw no strong conclusions about the effect of STN-
DBS on perceptual tasks of absolute timing, but have to consider
the possibility of a deterioration in performance as a function of
stimulation being switched “on”.

4.2. Methodological limitations

When a study demonstrates the absence of differences
between groups, it is important to consider whether there are
any methodological limitations that could have impaired the
sensitivity of the paradigm employed. We discuss, in the following,
a number of possible limitations in this study, and their potential
impact upon the data presented.

4.2.1. Task sensitivity
From the results presented in this manuscript alone, it might be

possible to draw the conclusion that the tasks employed were
generally insensitive to performance differences between groups,
or that they might have been performed at ceiling or floor level by
both groups. It is, however, unlikely that this is the case because
our laboratory have demonstrated differences between groups on
all of the tasks at performance levels both better (young adults)
and substantially worse (patients with Huntington's disease) than
the data presented here. Grube et al. (2010a) demonstrated poorer
absolute but not relative task performance in a group of patients
with spinocerebellar ataxia type 6 compared to a matched control
group. Cope et al. (2014) demonstrated that patients with Hun-
tington's disease performed more poorly than patients with
Multiple System Atrophy, who again performed more poorly than
controls in tasks Var, Iso and Met. No group difference was
demonstrated in task Pul. Grube, Cooper, and Griffiths (2013) in
turn demonstrated strong correlations between performance in
task Pul and literacy skills in early adulthood.

Fig. 4. Paired absolute differences in performance thresholds by DBS status. The
first and third measures within each triplet show performance with each run with
DBS ‘on’ compared to that with DBS ‘off’, while the middle measure shows the
difference in performance between the two runs with DBS ‘on’. Higher values
denote greater change between runs, regardless of whether this change is
improvement or deterioration of performance. Error bars denote confidence
interval, and symbols the group mean.
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4.2.2. Interval between ‘On’ and ‘Off’ states
In this study, patients performed each task three times in a row,

i.e. with STN-DBS ‘On’, ‘Off’, and then ‘On’ again, before moving on
to the next task. The break between a change in STN-DBS state and
the start of the next test was 5 min each time. This is sufficient
time for the recrudescence or dissipation of motor symptoms, and
the rationale for minimising this time was to minimise patient
discomfort and to allow repetitions of the same task to be under-
taken with as little change as possible in drug levels, fatigue or
other factors. The success of our approach to dealing with these
potential problems is evident from the finding that there were no
systematic differences in performance between the first and third
run on any of the tasks (Fig. 2).

Although the clinical effect of STN-DBS in PD is rapid, with
initial onset over seconds to minutes, this is not the case in some
of the other disorders for which DBS is employed such as dystonia,
where clinical improvement is typically observed after 4–6 weeks
of stimulation of the Globus Pallidus interna (GPi) and can
continue for up to 6 months (Kupsch et al., 2006; Ostrem,
Marks, Volz, Heath, & Starr, 2007). Cases have been reported
where, after several years of stimulation, sustained relief from
dystonia has been obtained when stimulation is withdrawn (Goto
& Yamada, 2004; Hebb, Chiasson, Lang, Brownstone, & Mendez,
2007). From these observations, and evidence from direct neuro-
physiological recordings, it has become evident that DBS has a
longer-term, neuromodulatory effect over weeks to months
(Ruge et al., 2011; van Hartevelt et al., 2014). It is possible that
these longer-term effects might modulate perceptual timing, and
that these effects would have been missed by our paradigm. The
examination of such effects would be most feasible as a
longitudinal study.

4.3. Anatomical implications

The ‘unified model of time perception’ proposes that time
intervals can be encoded as a combination of a learned duration,
supplied by the basal ganglia through the Striatal Best Frequency,
and an error-correction, supplied by the olivocerebellar network
(Teki et al., 2012). The proposed anatomical basis for this model is
illustrated in Fig. 5. The basal ganglia and cerebellum are inter-
connected by a number of direct and indirect pathways (Bostan
et al., 2010; Bostan, Dum, & Strick, 2013; Bostan & Strick, 2010),
including through a disynaptic pathway from STN (Bostan et al.,
2010). Previously published behavioural work implicates an obli-
gatory role for the cerebellum in absolute, but not relative, timing
(Grube et al., 2010a, 2010b) and for the basal ganglia in both
absolute and relative timing tasks (Cope et al., 2014). We propose
that the present behavioural findings demonstrate that the con-
nections between STN and the subtantia nigra and globus pallidus
are not critical to the functional role of the basal ganglia in
providing a 'pacemaker', with a particular role in perceptual timing.

Instead, it seems likely that perceptual timing is subserved by a
‘core’ functional network involving the striatum, olivo-cerebellar
system (Xu, Liu, Ashe, & Bushara, 2006) and supplementary motor
area (Kotz & Schwartze, 2011; Schwartze, Rothermich, & Kotz, 2012)
that interact through their known direct anatomical connections.
One can speculate a role for indirect connections through the STN
and thalamus in the integration of independent processing loops to
allow, for example, the co-ordination of timed movements.

5. Conclusions

The behavioural work presented here demonstrates that STN-
DBS is statistically unlikely to have a functionally significant effect
upon relative, beat-based, timing. No firm conclusions can be
drawn about the effect of STN-DBS on absolute, duration-based,
timing, other than that its presence has either no effect or worsens
performance. Although negative results are often viewed with
disappointment by the scientific community, these findings have
important implications for anatomical models of perceptual tim-
ing. Specifically, the present findings indicate that the oscillatory
loops that are thought to underpin movement (STN-GPe) and
perceptual timing (striatum-thalamus-cortex) are likely to be
functionally independent. Further, they imply that the disynaptic
connection between STN and cerebellum is unlikely to be critical
to relative perceptual timing, but leave open the possibility of a
specific role for this connection in the analysis of absolute,
duration-based time intervals. Further, they indicate that the
oscillatory loops that underpin movement (STN-GPe) and percep-
tual timing (striatum-thalamus-cortex) are likely to be function-
ally independent. Future research directions might investigate the
role of other anatomical connections between cerebellum and
basal ganglia, perhaps in the first instance by the observation of
perceptual timing performance in patients with GPi-DBS for
dystonia or thalamic DBS for essential tremor.

Appendix A. Supplementary matreial

Supplementary data associated with this article can be found in
the online version at http://dx.doi.org/10.1016/j.neuropsychologia.
2014.02.021.
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