159 research outputs found

    Nursery delineation, habitat utilization, movements, and migration of juvenile Carcharhinus plumbeus in Chesapeake Bay, Virginia, United States of America

    Get PDF
    Chesapeake Bay is possibly the largest summer nursery for Carcharhinus plumbeus in the western Atlantic. Longline sampling conducted from 1990--1999 was used to delineate this nursery spatially and temporally. Catch data from 83 longline stations sampled throughout the Virginia Chesapeake Bay were analyzed as a function of nine physical and environmental variables to delineate this nursery spatially. Tree-based models determined which variables best discriminated between stations with high and low catches and indicated that complex distribution patterns could be adequately modeled with few variables. The highest abundance of juvenile sharks was predicted where salinity was greater than 20.5 and depth was greater than 5.5 meters. Longline data from 100 sets made at two standard stations in the lower Bay indicated that immigration occurred in late May and early June and was highly correlated with increasing water temperature. Emigration from the estuary occurred in late September and early October and was highly correlated with decreasing day length. Between 1995 and 2000, 1846 juvenile C. plumbeus were tagged. With two exceptions, recaptures made in summer months were within 50 kilometers of the tagging location. Those recaptured in winter months were caught between 200 and 830 kilometers from the tagging location and indicated that the coastal waters of North Carolina and South Carolina serve as important winter nurseries from late October until May. Tag recaptures made in subsequent summers suggest that most juvenile sandbar sharks return to the same summer nurseries annually. Ultrasonic telemetry was used in investigate the diel activity patterns of juvenile C. plumbeus in Chesapeake Bay. Ten sharks were tracked for 10 to 50 consecutive hours. Swimming direction was correlated with mean direction of 2 tidal currents. Mean activity space was conservatively estimated to be 110 km2, which is two orders of magnitude greater than that reported for other carcharhiniform species. Swimming depth ranged from surface to 40 meters and was significantly deeper during the day (12.8 meters) than during the night (8.5 meters). This diel activity pattern and large activity space is hypothesized to be an adaptation for foraging on patchy prey in a productive, yet dynamic, temperate estuary

    Functional group diversity by ruthenium-catalyzed olefin cross-metathesis

    Get PDF
    Ruthenium-catalyzed olefin cross-metathesis tolerates a wide range of functional groups, including phosphine-boranes, sulfides, amines, phenols, and oxazolines. The high functional group tolerance allows for the use of an olefin as a linchpin for the synthesis of a variety of bi-, tri-, and tetradentate chiral ligands with a high degree of functional group diversity

    Age, Growth, and Reproductive Biology of Cownose Rays in Chesapeake Bay

    Get PDF
    The Cownose Ray Rhinoptera bonasus is an opportunistic predator of benthic invertebrates and has had a long history of negative interactions with commercial shellfish industries. Most recently, Cownose Rays have been implicated in negatively affecting the recovery of bay scallop Argopecten irradians stocks in North Carolina and oyster restoration and commercial aquaculture efforts in Chesapeake Bay. A mitigation attempt to decrease predation on shellfish has resulted in an unregulated fishery for Cownose Rays. Cownose Ray life history suggests that they are highly susceptible to overexploitation. We determined age, growth, and size at maturity for Cownose Rays collected in Chesapeake Bay. In total, 694 rays were used for the study: 246 males ranging in size from 30.0 to 98.0cm disc width (DW) and 448 females ranging from 30.0 to 110.5cm DW. The oldest individual observed was a female (107cm DW) estimated at age 21. Our data suggested that Cownose Rays grow considerably faster during the first few years than has been previously reported, thus producing higher estimates of the growth coefficient k. The best-fit growth models (three-parameter von Bertalanffy models) estimated k-values of 0.2741 for males and 0.1931 for females. The large sample size and inclusion of many older animals (n = 119 rays over age 10) resulted in theoretical maximum size estimates that matched the observed sizes well. The median size at 50% maturity was 85-86cm DW for males and females (corresponding to ages of approximate to 6-7 for males and approximate to 7-8 for females). Fecundity in Cownose Rays was typically one embryo per mature female, with a gestation period of 11-12 months. Our study confirms that the Cownose Ray is a K-selected species with late maturity, long gestation, and low reproductive potential, indicating that it could be highly susceptible to overexploitation

    Synthesis of coumarins by ring-closing metathesis

    Get PDF
    Investigations into olefin ring-closing metathesis (RCM) have led to a general method for the synthesis of coumarins. Catalysts with higher activity, such as the second-generation ruthenium catalyst, promote the intramolecular reaction between two-electron deficient olefins. This method allows for convenient access to a variety of coumarins substituted at both the 3- and 4-positions, as well as a tetrasubstituted example

    Identifying time measurement tampering in the traversal time and hop count analysis (TTHCA) wormhole detection algorithm

    Get PDF
    Traversal time and hop count analysis (TTHCA) is a recent wormhole detection algorithm for mobile ad hoc networks (MANET) which provides enhanced detection performance against all wormhole attack variants and network types. TTHCA involves each node measuring the processing time of routing packets during the route discovery process and then delivering the measurements to the source node. In a participation mode (PM) wormhole where malicious nodes appear in the routing tables as legitimate nodes, the time measurements can potentially be altered so preventing TTHCA from successfully detecting the wormhole. This paper analyses the prevailing conditions for time tampering attacks to succeed for PM wormholes, before introducing an extension to the TTHCA detection algorithm called ∆T Vector which is designed to identify time tampering, while preserving low false positive rates. Simulation results confirm that the ∆T Vector extension is able to effectively detect time tampered MANET attacks, thereby providing an important security enhancement to the TTHCA algorithm

    Functional group diversity by ruthenium-catalyzed olefin cross-metathesis

    Get PDF
    Ruthenium-catalyzed olefin cross-metathesis tolerates a wide range of functional groups, including phosphine-boranes, sulfides, amines, phenols, and oxazolines. The high functional group tolerance allows for the use of an olefin as a linchpin for the synthesis of a variety of bi-, tri-, and tetradentate chiral ligands with a high degree of functional group diversity

    Depth as a driver of evolution in the deep sea: Insights from grenadiers (Gadiformes: Macrouridae) of the genus Coryphaenoides

    Get PDF
    Here we consider the role of depth as a driver of evolution in a genus of deep-sea fishes. We provide a phylogeny for the genus Coryphaenoides (Gadiformes: Macrouridae) that represents the breadth of habitat use and distributions for these species. In our consensus phylogeny species found at abyssal depths (> 4000 m) form a well-supported lineage, which interestingly also includes two non-abyssal species, C. striaturus and C. murrayi, diverging from the basal node of that lineage. Biogeographic analyses suggest the genus may have originated in the Southern and Pacific Oceans where contemporary species diversity is highest. The abyssal lineage seems to have arisen secondarily and likely originated in the Southern/Pacific Oceans but diversification of this lineage occurred in the Northern Atlantic Ocean. All abyssal species are found in the North Atlantic with the exception of C. yaquinae in the North Pacific and C. filicauda in the Southern Oceans. Abyssal species tend to have broad depth ranges and wide distributions, indicating that the stability of the deep oceans and the ability to live across wide depths may promote population connectivity and facilitate large ranges. We also confirm that morphologically defined subgenera do not agree with our phylogeny and that the Giant grenadier (formally Albatrossia pectoralis) belongs to Coryphaenoides, indicating that a taxonomic revision of the genus is needed. We discuss the implications of our findings for understanding the radiation and diversification of this genus, and the likely role of adaptation to the abyss

    Validation of a portable, waterproof blood pH analyser for elasmobranchs

    Get PDF
    Quantifying changes in blood chemistry in elasmobranchs can provide insights into the physiological insults caused by anthropogenic stress, and can ultimately inform conservation and management strategies. Current methods for analysing elasmobranch blood chemistry in the field are often costly and logistically challenging. We compared blood pH values measured using a portable, waterproof pH meter (Hanna Instruments HI 99161) with blood pH values measured by an i- STAT system (CG4+ cartridges), which was previously validated for teleost and elasmobranch fishes, to gauge the accuracy of the pH meter in determining whole blood pH for the Cuban dogfish (Squalus cubensis) and lemon shark (Negaprion brevirostris). There was a significant linear relationship between values derived via the pH meter and the i- STAT for both species across a wide range of pH values and temperatures (Cuban dogfish: 6.8-7.1 pH 24-30 degrees C; lemon sharks: 7.0-7.45 pH 25-31 degrees C). The relative error in the pH meter's measurements was similar to +/- 2.7%. Using this device with appropriate correction factors and consideration of calibration temperatures can result in both a rapid and accurate assessment of whole blood pH, at least for the two elasmobranch species examined here. Additional species should be examined in the future across a wide range of temperatures to determine whether correction factors are universal

    Critical assessment and ramifications of a purported marine trophic cascade

    Get PDF
    When identifying potential trophic cascades, it is important to clearly establish the trophic linkages between predators and prey with respect to temporal abundance, demographics, distribution, and diet. In the northwest Atlantic Ocean, the depletion of large coastal sharks was thought to trigger a trophic cascade whereby predation release resulted in increased cownose ray abundance, which then caused increased predation on and subsequent collapse of commercial bivalve stocks. These claims were used to justify the development of a predator-control fishery for cownose rays, the “Save the Bay, Eat a Ray” fishery, to reduce predation on commercial bivalves. A reexamination of data suggests declines in large coastal sharks did not coincide with purported rapid increases in cownose ray abundance. Likewise, the increase in cownose ray abundance did not coincide with declines in commercial bivalves. The lack of temporal correlations coupled with published diet data suggest the purported trophic cascade is lacking the empirical linkages required of a trophic cascade. Furthermore, the life history parameters of cownose rays suggest they have low reproductive potential and their populations are incapable of rapid increases. Hypothesized trophic cascades should be closely scrutinized as spurious conclusions may negatively influence conservation and management decision

    Standardized Catch Rates of Sandbar Sharks and Dusky Sharks in the VIMS Longline Survey: 1975-2009

    Get PDF
    The Virginia Institute of Marine Science has conducted a fishery-independent longline survey during summer months since 1974. Data for sandbar sharks and dusky sharks captured in the survey between 1975 and 2009 are presented. Most of the sandbar sharks encountered by the survey were immature, with females composing almost all of the mature sandbar catch. Almost all dusky sharks captured were immature. Most of the catch since the early 1990’s has been composed of 0-4 year age classes. Nominal and standardized catch rates are presented. CPUE for both species decreased from the early 1980’s to minima in 1992. CPUE then slightly increased and has oscillated since
    corecore