68 research outputs found

    Genomic epidemiology reveals transmission patterns and dynamics of SARS-CoV-2 in Aotearoa New Zealand

    Get PDF
    New Zealand, a geographically remote Pacific island with easily sealable borders, implemented a nationwide 'lockdown' of all non-essential services to curb the spread of COVID-19. Here, we generate 649 SARS-CoV-2 genome sequences from infected patients in New Zealand with samples collected during the 'first wave', representing 56% of all confirmed cases in this time period. Despite its remoteness, the viruses imported into New Zealand represented nearly all of the genomic diversity sequenced from the global virus population. These data helped to quantify the effectiveness of public health interventions. For example, the effective reproductive number, Re of New Zealand's largest cluster decreased from 7 to 0.2 within the first week of lockdown. Similarly, only 19% of virus introductions into New Zealand resulted in ongoing transmission of more than one additional case. Overall, these results demonstrate the utility of genomic pathogen surveillance to inform public health and disease mitigation

    Accommodating individual travel history and unsampled diversity in Bayesian phylogeographic inference of SARS-CoV-2

    Get PDF
    Spatiotemporal bias in genome sampling can severely confound discrete trait phylogeographic inference. This has impeded our ability to accurately track the spread of SARS-CoV-2, the virus responsible for the COVID-19 pandemic, despite the availability of unprecedented numbers of SARS-CoV-2 genomes. Here, we present an approach to integrate individual travel history data in Bayesian phylogeographic inference and apply it to the early spread of SARS-CoV-2. We demonstrate that including travel history data yields i) more realistic hypotheses of virus spread and ii) higher posterior predictive accuracy compared to including only sampling location. We further explore methods to ameliorate the impact of sampling bias by augmenting the phylogeographic analysis with lineages from undersampled locations. Our reconstructions reinforce specific transmission hypotheses suggested by the inclusion of travel history data, but also suggest alternative routes of virus migration that are plausible within the epidemiological context but are not apparent with current sampling efforts.status: publishe

    Rapid emergence of SARS-CoV-2 Omicron variant is associated with an infection advantage over Delta in vaccinated persons

    Get PDF
    BACKGROUND: The SARS-CoV-2 Omicron variant became a global concern due to its rapid spread and displacement of the dominant Delta variant. We hypothesized that part of Omicron’s rapid rise was based on its increased ability to cause infections in persons that are vaccinated compared to Delta. METHODS: We analyzed nasal swab PCR tests for samples collected between December 12 and 16, 2021, in Connecticut when the proportion of Delta and Omicron variants was relatively equal. We used the spike gene target failure (SGTF) to classify probable Delta and Omicron infections. We fitted an exponential curve to the estimated infections to determine the doubling times for each variant. We compared the test positivity rates for each variant by vaccination status, number of doses, and vaccine manufacturer. Generalized linear models were used to assess factors associated with odds of infection with each variant among persons testing positive for SARS-CoV-2. FINDINGS: For infections with high virus copies (Ct < 30) among vaccinated persons, we found higher odds that they were infected with Omicron compared to Delta, and that the odds increased with increased number of vaccine doses. Compared to unvaccinated persons, we found significant reduction in Delta positivity rates after two (43.4%–49.1%) and three vaccine doses (81.1%), while we only found a significant reduction in Omicron positivity rates after three doses (62.3%). CONCLUSION: The rapid rise in Omicron infections was likely driven by Omicron’s escape from vaccine-induced immunity. FUNDING: This work was supported by the Centers for Disease Control and Prevention (CDC)

    Partial ORF1ab Gene Target Failure with Omicron BA.2.12.1

    Get PDF
    Mutations in the genome of SARS-CoV-2 can affect the performance of molecular diagnostic assays. In some cases, such as S-gene target failure, the impact can serve as a unique indicator of a particular SARS-CoV-2 variant and provide a method for rapid detection. Here, we describe partial ORF1ab gene target failure (pOGTF) on the cobas SARS-CoV-2 assays, defined by a $2-thermocycle delay in detection of the ORF1ab gene compared to that of the E-gene. We demonstrate that pOGTF is 98.6% sensitive and 99.9% specific for SARS-CoV-2 lineage BA.2.12.1, an emerging variant in the United States with spike L452Q and S704L mutations that may affect transmission, infectivity, and/ or immune evasion. Increasing rates of pOGTF closely mirrored rates of BA.2.12.1 sequences uploaded to public databases, and, importantly, increasing local rates of pOGTF also mirrored increasing overall test positivity. Use of pOGTF as a proxy for BA.2.12.1 provides faster tracking of the variant than whole-genome sequencing and can benefit laboratories without sequencing capabilities

    Tracking virus outbreaks in the twenty-first century

    Get PDF
    Emerging viruses have the potential to impose substantial mortality, morbidity and economic burdens on human populations. Tracking the spread of infectious diseases to assist in their control has traditionally relied on the analysis of case data gathered as the outbreak proceeds. Here, we describe how many of the key questions in infectious disease epidemiology, from the initial detection and characterization of outbreak viruses, to transmission chain tracking and outbreak mapping, can now be much more accurately addressed using recent advances in virus sequencing and phylogenetics. We highlight the utility of this approach with the hypothetical outbreak of an unknown pathogen, 'Disease X', suggested by the World Health Organization to be a potential cause of a future major epidemic. We also outline the requirements and challenges, including the need for flexible platforms that generate sequence data in real-time, and for these data to be shared as widely and openly as possible

    Intrahost speciations and host switches played an important role in the evolution of herpesviruses.

    No full text
    In times when herpesvirus genomic data were scarce, the cospeciation between these viruses and their hosts was considered to be common knowledge. However, as more herpesviral sequences were made available, tree reconciliation analyses started to reveal topological incongruences between host and viral phylogenies, indicating that other cophylogenetic events, such as intrahost speciation and host switching, likely played important roles along more than 200 million years of evolutionary history of these viruses. Tree reconciliations performed with undated phylogenies can identify topological differences, but offer insufficient information to reveal temporal incongruences between the divergence timing of host and viral species. In this study, we performed cophylogenetic analyses using time-resolved trees of herpesviruses and their hosts, based on careful molecular clock modelling. This approach enabled us to infer cophylogenetic events over time and also integrate information on host biogeography to better understand host-virus evolutionary history. Given the increasing amount of sequence data now available, mismatches between host and viral phylogenies have become more evident, and to account for such phylogenetic differences, host switches, intrahost speciations and losses were frequently found in all tree reconciliations. For all subfamilies in Herpesviridae, under all scenarios we explored, intrahost speciation and host switching were more frequent than cospeciation, which was shown to be a rare event, restricted to contexts where topological and temporal patterns of viral and host evolution were in strict agreement

    Asynchronicity of endemic and emerging mosquito-borne disease outbreaks in the Dominican Republic

    No full text
    Mosquito-borne viruses threaten the Caribbean due to the region's tropical climate and seasonal reception of international tourists. Outbreaks of chikungunya and Zika have demonstrated the rapidity with which these viruses can spread. Concurrently, dengue fever cases have climbed over the past decade. Sustainable disease control measures are urgently needed to quell virus transmission and prevent future outbreaks. Here, to improve upon current control methods, we analyze temporal and spatial patterns of chikungunya, Zika, and dengue outbreaks reported in the Dominican Republic between 2012 and 2018. The viruses that cause these outbreaks are transmitted by Aedes mosquitoes, which are sensitive to seasonal climatological variability. We evaluate whether climate and the spatio-temporal dynamics of dengue outbreaks could explain patterns of emerging disease outbreaks. We find that emerging disease outbreaks were robust to the climatological and spatio-temporal constraints defining seasonal dengue outbreak dynamics, indicating that constant surveillance is required to prevent future health crises
    corecore