22 research outputs found

    Development of chemical tools to monitor human Kallikrein 13 (KLK13) activity

    Get PDF
    Kallikrein 13 (KLK13) was first identified as an enzyme that is downregulated in a subset of breast tumors. This serine protease has since been implicated in a number of pathological processes including ovarian, lung and gastric cancers. Here we report the design, synthesis and deconvolution of libraries of internally quenched fluorogenic peptide substrates to determine the specificity of substrate binding subsites of KLK13 in prime and non-prime regions (according to the Schechter and Berger convention). The substrate with the consensus sequential motive ABZ-Val-Arg-Phe-Arg-ANB-NH2 demonstrated selectivity towards KLK13 and was successfully converted into an activity-based probe by the incorporation of a chloromethylketone warhead and biotin bait. The compounds described may serve as suitable tools to detect KLK13 activity in diverse biological samples, as exemplified by overexpression experiments and targeted labeling of KLK13 in cell lysates and saliva. In addition, we describe the development of selective activity-based probes targeting KLK13, to our knowledge the first tool to analyze the presence of the active enzyme in biological samples

    Non-invasive biomarkers for detection of bladder cancer

    No full text
    Bladder cancer (BC) is one of the most common cancer in the world. About 3% of all new cancer diagnoses are due to urinary bladder cancer. BC is also a leading cause of cancer-related death, as 2.1% of all cancer deaths are caused by bladder cancer. However, lack of a reliable biomarker is the biggest issue for BC diagnosis, prognosis and treatment. Development of non-invasive, quick and economical methods in bladder cancer diagnosis still remains a great challenge. Highly specific, easy-to-perform tests are really needed. Ideally if they can identify the presence of a tumor before the first symptoms appear, as time plays an important role in cancer. In this article, an overview of the current established diagnostic tests and newly identified biomarkers will be provided

    Proteolityc activity monitoring as an element of diagnostics of civilization diseases

    No full text
    Proteolytic enzymes are essential for the proper functioning of every living cell. Due to their great importance in controlling metabolic changes in living organisms, they could be used in the diagnosis of civilization diseases. Hence, the search for new methods of determining and controlling their activity is extremely important. Our team, has been studying substrates of proteases and their potential use in detection of biomarkers activity for many years

    Novel internally quenched substrate of the trypsin-like subunit of 20S eukaryotic proteasome

    No full text
    This article describes the synthesis, using combinatorial chemistry, of internally quenched substrates of the trypsin-like subunit of human 20S proteasome. Such substrates were optimized in both the nonprime and prime regions of the peptide chain. Two were selected as the most susceptible for proteasomal proteolysis with excellent kinetic parameters: (i) ABZ-Val-Val-Ser-Arg-Ser-Leu-Gly-Tyr(3-NO2)-NH2 (kcat/KM = 934,000 M(-1) s(-1)) and (ii) ABZ-Val-Val-Ser-GNF-Ala-Met-Gly-Tyr(3-NO2)-NH2 (kcat/KM = 1,980,000 M(-1) s(-1)). Both compounds were efficiently hydrolyzed by the 20S proteasome at picomolar concentrations, demonstrating significant selectivity over other proteasome entities

    Structural determinants of substrate specificity of SplF protease from Staphylococcus aureus

    Get PDF
    Accumulating evidence suggests that six proteases encoded in the spl operon of a dangerous human pathogen, Staphylococcus aureus, may play a role in virulence. Interestingly, SplA, B, D, and E have complementary substrate specificities while SplF remains to be characterized in this regard. Here, we describe the prerequisites of a heterologous expression system for active SplF protease and characterize the enzyme in terms of substrate specificity and its structural determinants. Substrate specificity of SplF is comprehensively profiled using combinatorial libraries of peptide substrates demonstrating strict preference for long aliphatic sidechains at the P1 subsite and significant selectivity for aromatic residues at P3. The crystal structure of SplF was provided at 1.7 Å resolution to define the structural basis of substrate specificity of SplF. The obtained results were compared and contrasted with the characteristics of other Spl proteases determined to date to conclude that the spl operon encodes a unique extracellular proteolytic system

    SP-1, a Serine Protease from the Gut Microbiota, Influences Colitis and Drives Intestinal Dysbiosis in Mice

    No full text
    Increased protease activity has been linked to the pathogenesis of IBD. While most studies have been focusing on host proteases in gut inflammation, it remains unclear how to address the potential contribution of their bacterial counterparts. In the present study, we report a functional characterization of a newly identified serine protease, SP-1, from the human gut microbiota. The serine protease repertoire of gut Clostridium was first explored, and the specificity of SP-1 was analyzed using a combinatorial chemistry method. Combining in vitro analyses and a mouse model of colitis, we show that oral administration of recombinant bacteria secreting SP-1 (i) compromises the epithelial barrier, (ii) alters the microbial community, and (ii) exacerbates colitis. These findings suggest that gut microbial protease activity may constitute a valuable contributor to IBD and could, therefore, represent a promising target for the treatment of the disease

    One Step Beyond: Design of Substrates Spanning Primed Positions of Zika Virus NS2B-NS3 Protease

    No full text
    Although the mosquito-borne Zika virus was discovered in the late 1940s of the 20th century, for years it was neglected, as the disease in humans was rare and relatively mild. Viral NS2B-NS3 protease is essential for virus replication, and except for maturation of viral proteins, it also modulates the infection microenvironment to facilitate virus invasion. Here, we report the combinatorial chemistry approach for the synthesis of internally quenched substrates of the Zika virus NS2B-NS3 protease that were optimized in prime positions of the peptide chain. Final substrate ABZ-Val-Lys-Lys-Arg-Ala-Ala-Trp-Tyr­(3-NO2)-NH2 displays an excellent kinetic parameter (kcat/KM reaching nearly 1.26 × 108 M–1 × s–1), which is over 10 times greater than previously reported (7.7 × 106 M–1 × s–1) substrate. Moreover, it was found to be selective over West Nile virus protease

    One step beyond : design of substrates spanning primed positions of Zika Virus NS2B-NS3 protease

    No full text
    Although the mosquito-borne Zika virus was discovered in the late 1940s of the 20th century, for years it was neglected, as the disease in humans was rare and relatively mild. Viral NS2B-NS3 protease is essential for virus replication, and except for maturation of viral proteins, it also modulates the infection microenvironment to facilitate virus invasion. Here, we report the combinatorial chemistry approach for the synthesis of internally quenched substrates of the Zika virus NS2B-NS3 protease that were optimized in prime positions of the peptide chain. Final substrate ABZ-Val-Lys-Lys-Arg-Ala-Ala-Trp-Tyr­(3-NO2)-NH2 displays an excellent kinetic parameter (kcat/KM reaching nearly 1.26 × 108 M–1 × s–1), which is over 10 times greater than previously reported (7.7 × 106 M–1 × s–1) substrate. Moreover, it was found to be selective over West Nile virus protease
    corecore