2,417 research outputs found

    Revolution in Crime: How Cryptocurrencies Have Changed the Criminal Landscape

    Full text link
    This thesis will examine the ways in which various cryptocurrencies have impacted certain traditional crimes. While crime is always evolving with technology, cryptocurrencies are a game changer in that they provide anonymous and decentralized payment systems which, while they can be tracked in a reactive sense via the blockchain, are seen by criminals as having better uses for them than traditional fiat currencies, such as the ability to send money relatively fast to another party without going through an intermediary, or the ability to obscure the origin of the money for money laundering purposes. Every week there are new cryptocurrencies flooding the market, and it doesn’t look like it will abate any time soon. Blockchain technology, the underlying technology behind all cryptocurrencies, has uses that far surpass just the currency aspect. Criminals also see the potential that sending money anonymously, without a middleman beholden to regulations and tracking those transactions has. Any new technology while being revolutionary, will always trickle down to seedier elements of society who will always find a use for it. This paper will look at how cryptocurrencies have impacted drug trafficking, money laundering, and ransomware. I will also explore a new kind of crime called cryptojacking that has become possible because of cryptocurrency mining. Law enforcement may be playing a reactive and not a proactive role in the age of cryptocurrencies, but this paper will provide information that can be useful for law enforcement and applicable to their investigations

    Thioredoxin f1 and NADPH-dependent thioredoxin reductase C have overlapping functions in regulating photosynthetic metabolism and plant growth in response to varying light conditions

    Get PDF
    Two different thiol-redox-systems exist in plant chloroplasts, the ferredoxin-thioredoxin system, which depends of ferredoxin reduced by the photosynthetic electron-transport chain and, thus, of light, and the NADPH-dependent thioredoxin reductase C (NTRC) system, which relies on NADPH and thus may be linked to sugar metabolism in the dark. Previous studies suggested therefore that the two different systems may have different functions in plants. We now report that there is a previously unrecognized functional redundancy of thioredoxin-f1 and NTRC in regulating photosynthetic metabolism and growth. In Arabidopsis mutants, combined - but not single - deficiencies of thioredoxin-f1 and NTRC led to severe growth inhibition and perturbed light acclimation, accompanied by strong impairments of Calvin-Benson-cycle activity and starch accumulation. Light-activation of key-enzymes of these pathways, fructose-1,6-bisphosphatase and ADP-glucose pyrophosphorylase, was almost completely abolished. The subsequent increase in NADPH/NADP+ and ATP/ADP ratios led to increased nitrogen assimilation, NADP-malate dehydrogenase activation and light-vulnerability of photosystem I core-proteins. In an additional approach, reporter studies show that Trx f1 and NTRC proteins are both co-localized in the same chloroplast substructure. Results provide genetic evidence that light and NADPH dependent thiol-redox systems interact at the level of thioredoxin-f1 and NTRC to coordinately participate in the regulation of Calvin-Benson-cycle, starch metabolism and growth in response to varying light conditions

    Thioredoxin f1 and NADPH-dependent thioredoxin reductase C have overlapping functions in regulating photosynthetic metabolism and plant growth in response to varying light conditions

    Get PDF
    Two different thiol-redox-systems exist in plant chloroplasts, the ferredoxin-thioredoxin system, which depends of ferredoxin reduced by the photosynthetic electron-transport chain and, thus, of light, and the NADPH-dependent thioredoxin reductase C (NTRC) system, which relies on NADPH and thus may be linked to sugar metabolism in the dark. Previous studies suggested therefore that the two different systems may have different functions in plants. We now report that there is a previously unrecognized functional redundancy of thioredoxin-f1 and NTRC in regulating photosynthetic metabolism and growth. In Arabidopsis mutants, combined - but not single - deficiencies of thioredoxin-f1 and NTRC led to severe growth inhibition and perturbed light acclimation, accompanied by strong impairments of Calvin-Benson-cycle activity and starch accumulation. Light-activation of key-enzymes of these pathways, fructose-1,6-bisphosphatase and ADP-glucose pyrophosphorylase, was almost completely abolished. The subsequent increase in NADPH/NADP+ and ATP/ADP ratios led to increased nitrogen assimilation, NADP-malate dehydrogenase activation and light-vulnerability of photosystem I core-proteins. In an additional approach, reporter studies show that Trx f1 and NTRC proteins are both co-localized in the same chloroplast substructure. Results provide genetic evidence that light and NADPH dependent thiol-redox systems interact at the level of thioredoxin-f1 and NTRC to coordinately participate in the regulation of Calvin-Benson-cycle, starch metabolism and growth in response to varying light conditions.Peer reviewe

    Measurement of the branching fraction and CP content for the decay B(0) -> D(*+)D(*-)

    Get PDF
    This is the pre-print version of the Article. The official published version can be accessed from the links below. Copyright @ 2002 APS.We report a measurement of the branching fraction of the decay B0→D*+D*- and of the CP-odd component of its final state using the BABAR detector. With data corresponding to an integrated luminosity of 20.4  fb-1 collected at the Υ(4S) resonance during 1999–2000, we have reconstructed 38 candidate signal events in the mode B0→D*+D*- with an estimated background of 6.2±0.5 events. From these events, we determine the branching fraction to be B(B0→D*+D*-)=[8.3±1.6(stat)±1.2(syst)]×10-4. The measured CP-odd fraction of the final state is 0.22±0.18(stat)±0.03(syst).This work is supported by DOE and NSF (USA), NSERC (Canada), IHEP (China), CEA and CNRS-IN2P3 (France), BMBF (Germany), INFN (Italy), NFR (Norway), MIST (Russia), and PPARC (United Kingdom). Individuals have received support from the A.P. Sloan Foundation, Research Corporation, and Alexander von Humboldt Foundation
    corecore