93 research outputs found

    Presenilin 1 Protein Directly Interacts with Bcl-2

    Get PDF
    Presenilin proteins are involved in familial Alzheimer's disease, a neurodegenerative disorder characterized by massive death of neurons. We describe a direct interaction between presenilin 1 (PS1) and Bcl-2, a key factor in the regulation of apoptosis, by yeast two-hybrid interaction system, by co-immunoprecipitation, and by cross-linking experiments. Our data show that PS1 and Bcl-2 assemble into a macromolecular complex, and that they are released from this complex in response to an apoptotic stimulus induced by staurosporine. The results support the idea of cross-talk between these two proteins during apoptosis

    The Cortical Signature of Alzheimer's Disease: Regionally Specific Cortical Thinning Relates to Symptom Severity in Very Mild to Mild AD Dementia and is Detectable in Asymptomatic Amyloid-Positive Individuals

    Get PDF
    Alzheimer's disease (AD) is associated with neurodegeneration in vulnerable limbic and heteromodal regions of the cerebral cortex, detectable in vivo using magnetic resonance imaging. It is not clear whether abnormalities of cortical anatomy in AD can be reliably measured across different subject samples, how closely they track symptoms, and whether they are detectable prior to symptoms. An exploratory map of cortical thinning in mild AD was used to define regions of interest that were applied in a hypothesis-driven fashion to other subject samples. Results demonstrate a reliably quantifiable in vivo signature of abnormal cortical anatomy in AD, which parallels known regional vulnerability to AD neuropathology. Thinning in vulnerable cortical regions relates to symptom severity even in the earliest stages of clinical symptoms. Furthermore, subtle thinning is present in asymptomatic older controls with brain amyloid binding as detected with amyloid imaging. The reliability and clinical validity of AD-related cortical thinning suggests potential utility as an imaging biomarker. This “disease signature” approach to cortical morphometry, in which disease effects are mapped across the cortical mantle and then used to define ROIs for hypothesis-driven analyses, may provide a powerful methodological framework for studies of neuropsychiatric diseases

    Beneficial effect of human anti-amyloid-β active immunization on neurite morphology and tau pathology

    Get PDF
    Anti-amyloid-β immunization leads to amyloid clearance in patients with Alzheimer's disease, but the effect of vaccination on amyloid-β-induced neuronal pathology has not been quantitatively examined. The objectives of this study were to address the effects of anti-amyloid-β active immunization on neurite trajectories and the pathological hallmarks of Alzheimer's disease in the human hippocampus. Hippocampal sections from five patients with Alzheimer's disease enrolled in the AN1792 Phase 2a trial were compared with those from 13 non-immunized Braak-stage and age-matched patients with Alzheimer's disease, and eight age-matched non-demented controls. Analyses included neurite curvature ratio as a quantitative measure of neuritic abnormalities, amyloid and tau loads, and a quantitative characterization of plaque-associated neuritic dystrophy and astrocytosis. Amyloid load and density of dense-core plaques were decreased in the immunized group compared to non-immunized patients (P < 0.01 and P < 0.001, respectively). The curvature ratio in non-immunized patients with Alzheimer's disease was elevated compared to non-demented controls (P < 0.0001). In immunized patients, however, the curvature ratio was normalized when compared to non-immunized patients (P < 0.0001), and not different from non-demented controls. In the non-immunized patients, neurites close to dense-core plaques (within 50 µm) were more abnormal than those far from plaques (i.e. beyond 50 µm) (P < 0.0001). By contrast, in the immunized group neurites close to and far from the remaining dense-core plaques did not differ, and both were straighter compared to the non-immunized patients (P < 0.0001). Compared to non-immunized patients, dense-core plaques remaining after immunization had similar degree of astrocytosis (P = 0.6060), more embedded dystrophic neurites (P < 0.0001) and were more likely to have mitochondrial accumulation (P < 0.001). In addition, there was a significant decrease in the density of paired helical filament-1-positive neurons in the immunized group as compared to the non-immunized (P < 0.05), but not in the density of Alz50 or thioflavin-S positive tangles, suggesting a modest effect of anti-amyloid-β immunization on tangle pathology. Clearance of amyloid plaques upon immunization with AN1792 effectively improves a morphological measure of neurite abnormality in the hippocampus. This improvement is not just attributable to the decrease in plaque load, but also occurs within the halo of the remaining dense-core plaques. However, these remaining plaques still retain some of their toxic potential. Anti-amyloid-β immunization might also ameliorate the hippocampal tau pathology through a decrease in tau phosphorylation. These data agree with preclinical animal studies and further demonstrate that human anti-amyloid-β immunization does not merely clear amyloid from the Alzheimer's disease brain, but reduces some of the neuronal alterations that characterize Alzheimer's diseas

    Shorter Telomeres May Mark Early Risk of Dementia: Preliminary Analysis of 62 Participants from the Nurses' Health Study

    Get PDF
    Background: Dementia takes decades to develop, and effective prevention will likely require early intervention. Thus, it is critical to identify biomarkers of preclinical disease, allowing targeting of high-risk subjects for preventive efforts. Since telomeres shorten with age and oxidative stress both of which are important contributors to the onset of dementia, telomere length might be a valuable biomarker. Methodology/Principal Findings: Among 62 participants of the Nurses' Health Study,we conducted neurologic evaluations, including patient and caregiver interviews physical exam, neurologic exam and neuropsychologic testing. We also conducted magnetic resonance imaging (MRI) in a sample of 29 of these women. In these preliminary data, after adjustment for numerous health and lifestyle factors, we found that truncated telomeres in peripheral blood leukocytes segregate with preclinical dementia states, including mild cognitive impairment (MRI); the odds of MCI were 12 fold higher (odds ratio = 12.00, 95% confidence interval 1.24-116.5) for those with shorter telomere length compared to longer telomere length. In addition, decreasing telomere length was strongly related to decreasing hippocampal volume (p=0.038). Conclusions: These preliminary data suggest that telomere length may be a possible early marker of dementia risk, and merits further study in large, prospective investigations

    The GLY2019SER Mutation in LRRK2 is Not Fully Penetrant in Familial Parkinson\u27s Disease: the GenePD Study

    Get PDF
    Background: We report age-dependent penetrance estimates for leucine-rich repeat kinase 2 (LRRK2)-related Parkinson\u27s disease (PD) in a large sample of familial PD. The most frequently seen LRRK2 mutation, Gly2019Ser (G2019S), is associated with approximately 5 to 6% of familial PD cases and 1 to 2% of idiopathic cases, making it the most common known genetic cause of PD. Studies of the penetrance of LRRK2 mutations have produced a wide range of estimates, possibly due to differences in study design and recruitment, including in particular differences between samples of familial PD versus sporadic PD. Methods: A sample, including 903 affected and 58 unaffected members from 509 families ascertained for having two or more PD-affected members, 126 randomly ascertained PD patients and 197 controls, was screened for five different LRRK2 mutations. Penetrance was estimated in families of LRRK2 carriers with consideration of the inherent bias towards increased penetrance in a familial sample. Results: Thirty-one out of 509 families with multiple cases of PD (6.1%) were found to have 58 LRRK2 mutation carriers (6.4%). Twenty-nine of the 31 families had G2019S mutations while two had R1441C mutations. No mutations were identified among controls or unaffected relatives of PD cases. Nine PD-affected relatives of G2019S carriers did not carry the LRRK2 mutation themselves. At the maximum observed age range of 90 to 94 years, the unbiased estimated penetrance was 67% for G2019S families, compared with a baseline PD risk of 17% seen in the non-LRRK2-related PD families. Conclusion: Lifetime penetrance of LRRK2 estimated in the unascertained relatives of multiplex PD families is greater than that reported in studies of sporadically ascertained LRRK2 cases, suggesting that inherited susceptibility factors may modify the penetrance of LRRK2 mutations. In addition, the presence of nine PD phenocopies in the LRRK2 families suggests that these susceptibility factors may also increase the risk of non-LRRK2-related PD. No differences in penetrance were found between men and women, suggesting that the factors that influence penetrance for LRRK2 carriers are independent of the factors which increase PD prevalence in men

    Inhibition of Hedgehog Signaling Antagonizes Serous Ovarian Cancer Growth in a Primary Xenograft Model

    Get PDF
    Recent evidence links aberrant activation of Hedgehog (Hh) signaling with the pathogenesis of several cancers including medulloblastoma, basal cell, small cell lung, pancreatic, prostate and ovarian. This investigation was designed to determine if inhibition of this pathway could inhibit serous ovarian cancer growth.We utilized an in vivo pre-clinical model of serous ovarian cancer to characterize the anti-tumor activity of Hh pathway inhibitors cyclopamine and a clinically applicable derivative, IPI-926. Primary human serous ovarian tumor tissue was used to generate tumor xenografts in mice that were subsequently treated with cyclopamine or IPI-926.Both compounds demonstrated significant anti-tumor activity as single agents. When IPI-926 was used in combination with paclitaxel and carboplatinum (T/C), no synergistic effect was observed, though sustained treatment with IPI-926 after cessation of T/C continued to suppress tumor growth. Hh pathway activity was analyzed by RT-PCR to assess changes in Gli1 transcript levels. A single dose of IPI-926 inhibited mouse stromal Gli1 transcript levels at 24 hours with unchanged human intra-tumor Gli1 levels. Chronic IPI-926 therapy for 21 days, however, inhibited Hh signaling in both mouse stromal and human tumor cells. Expression data from the micro-dissected stroma in human serous ovarian tumors confirmed the presence of Gli1 transcript and a significant association between elevated Gli1 transcript levels and worsened survival.IPI-926 treatment inhibits serous tumor growth suggesting the Hh signaling pathway contributes to the pathogenesis of ovarian cancer and may hold promise as a novel therapeutic target, especially in the maintenance setting

    The Gly2019Ser mutation in LRRK2 is not fully penetrant in familial Parkinson's disease: the GenePD study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We report age-dependent penetrance estimates for leucine-rich repeat kinase 2 (<it>LRRK2</it>)-related Parkinson's disease (PD) in a large sample of familial PD. The most frequently seen <it>LRRK2 </it>mutation, Gly2019Ser (G2019S), is associated with approximately 5 to 6% of familial PD cases and 1 to 2% of idiopathic cases, making it the most common known genetic cause of PD. Studies of the penetrance of <it>LRRK2 </it>mutations have produced a wide range of estimates, possibly due to differences in study design and recruitment, including in particular differences between samples of familial PD versus sporadic PD.</p> <p>Methods</p> <p>A sample, including 903 affected and 58 unaffected members from 509 families ascertained for having two or more PD-affected members, 126 randomly ascertained PD patients and 197 controls, was screened for five different <it>LRRK2 </it>mutations. Penetrance was estimated in families of <it>LRRK2 </it>carriers with consideration of the inherent bias towards increased penetrance in a familial sample.</p> <p>Results</p> <p>Thirty-one out of 509 families with multiple cases of PD (6.1%) were found to have 58 <it>LRRK2 </it>mutation carriers (6.4%). Twenty-nine of the 31 families had G2019S mutations while two had R1441C mutations. No mutations were identified among controls or unaffected relatives of PD cases. Nine PD-affected relatives of G2019S carriers did not carry the <it>LRRK2 </it>mutation themselves. At the maximum observed age range of 90 to 94 years, the unbiased estimated penetrance was 67% for G2019S families, compared with a baseline PD risk of 17% seen in the non-<it>LRRK2</it>-related PD families.</p> <p>Conclusion</p> <p>Lifetime penetrance of <it>LRRK2 </it>estimated in the unascertained relatives of multiplex PD families is greater than that reported in studies of sporadically ascertained <it>LRRK2 </it>cases, suggesting that inherited susceptibility factors may modify the penetrance of <it>LRRK2 </it>mutations. In addition, the presence of nine PD phenocopies in the <it>LRRK2 </it>families suggests that these susceptibility factors may also increase the risk of non-<it>LRRK2</it>-related PD. No differences in penetrance were found between men and women, suggesting that the factors that influence penetrance for <it>LRRK2 </it>carriers are independent of the factors which increase PD prevalence in men.</p
    corecore