6,776 research outputs found

    The mass-metallicity relation of local active galaxies

    Full text link
    We systematically measure the gas-phase metallicities and the mass-metallicity relation of a large sample of local active galaxies for the first time. Observed emission-line fluxes from the Sloan Digital Sky Survey (SDSS) are compared to a four-dimensional grid of photoionization models using the Bayesian parameter estimation code NebulaBayes. For the first time we take into account arbitrary mixing between HII region and narrow-line region (NLR) emission, and the models are also varied with metallicity, ionization parameter in the NLR, and the gas pressure. The active galactic nucleus (AGN) oxygen abundance is found to increase by ΔO/H∌0.1\Delta {\rm O/H} \sim 0.1 dex as a function of host galaxy stellar mass over the range 10.1<log⁥M∗/M⊙<11.310.1 < \log M_* / M_\odot < 11.3. We also measure the metallicity and ionization parameter of 231000 star-forming galaxies for comparison with the sample of 7670 Seyfert 2 galaxies. A systematic offset in oxygen abundance of 0.09 dex is observed between the mass-metallicity relations of the star-forming and active galaxies. We investigate potential causes of the offset, including sample selection and the treatment in the models of diffuse ionized gas, pressure, and ionization parameter. We cannot identify the major cause(s), but suspect contributions due to deficiencies in modeling the ionizing spectra and the treatment of dust physics. Optical diagnostic diagrams are presented with the star-forming and Seyfert data colored by the inferred oxygen abundance, ionization parameter and gas pressure, clearly illustrating the trends in these quantities.Comment: 12 pages, 4 figures and 1 table; accepted for publication in Ap

    Dusty, Radiation Pressure Dominated Photoionization. II. Multi-Wavelength Emission Line Diagnostics for Narrow Line Regions

    Full text link
    Seyfert narrow line region (NLR) emission line ratios are remarkably uniform, displaying only ~0.5 dex variation between galaxies, and even less within an individual object. Previous photoionization and shock models of this region were unable to explain this observation without the introduction of arbitrary assumptions or additional parameters. Dusty, radiation pressure dominated photoionization models provide a simple physical mechanism which can reproduce this spectral uniformity between different objects. In the first paper of this series we described this model and its implementation in detail, as well as presenting grids of model emission lines and examining the model structures. Here we explore these models further, demonstrating their ability to reproduce the observed Seyfert line ratios on standard line diagnostic diagrams in both the optical and UV. We also investigate the effects that the variation of metallicity, density and ionizing spectrum have upon both the new paradigm and the standard photoionization models used hitherto. Along with the standard diagnostic diagrams we provide several new diagnostic diagrams in the UV, Optical and IR. These new diagrams can provide further tests of the dusty, radiation pressure photoionization paradigm as well as being used as diagnostics of the metallicity, density and ionizing spectrum of the emission line clouds.Comment: Accepted by ApJS, full pdf including figures can be obtained at http://www.mso.anu.edu.au/~bgroves/Papers/ApJS2.pd

    Interrogating Seyferts with NebulaBayes: Spatially probing the narrow-line region radiation fields and chemical abundances

    Full text link
    NebulaBayes is a new Bayesian code that implements a general method of comparing observed emission-line fluxes to photoionization model grids. The code enables us to extract robust, spatially resolved measurements of abundances in the extended narrow line regions (ENLRs) produced by Active Galactic Nuclei (AGN). We observe near-constant ionization parameters but steeply radially-declining pressures, which together imply that radiation pressure regulates the ENLR density structure on large scales. Our sample includes four `pure Seyfert' galaxies from the S7 survey that have extensive ENLRs. NGC2992 shows steep metallicity gradients from the nucleus into the ionization cones. An {\it inverse} metallicity gradient is observed in ESO138-G01, which we attribute to a recent gas inflow or minor merger. A uniformly high metallicity and hard ionizing continuum are inferred across the ENLR of Mrk573. Our analysis of IC5063 is likely affected by contamination from shock excitation, which appears to soften the inferred ionizing spectrum. The peak of the ionizing continuum E_peak is determined by the nuclear spectrum and the absorbing column between the nucleus and the ionized nebula. We cannot separate variation in this intrinsic E_peak from the effects of shock or HII region contamination, but E_peak measurements nevertheless give insights into ENLR excitation. We demonstrate the general applicability of NebulaBayes by analyzing a nuclear spectrum from the non-active galaxy NGC4691 using a HII region grid. The NLR and HII region model grids are provided with NebulaBayes for use by the astronomical community.Comment: Accepted for publication in ApJ; 29 pages with 10 figures and 3 table

    Modelling the Pan-Spectral Energy Distributions of Starburst & Active Galaxies

    Full text link
    We present results of a self-consistent model of the spectral energy distribution (SED) of starburst galaxies. Two parameters control the IR SED, the mean pressure in the ISM and the destruction timescale of molecular clouds. Adding a simplified AGN spectrum provides mixing lines on IRAS color : color diagrams. This reproduces the observed colors of both AGNs and starbursts.Comment: Poster Paper for IAU 222: The Interplay among Black Holes, Stars and ISM in Galactic Nucle

    Are the Narrow Line Regions in Active Galaxies Dusty and Radiation Pressure Dominated?

    Get PDF
    The remarkable similarity between emission spectra of narrow line regions (NLR) in Seyfert Galaxies has long presented a mystery. In photoionization models, this similarity implies that the ionization parameter is nearly always the same, about U ~ 0.01. Here we present dusty, radiation-pressure dominated photoionization models that can provide natural physical insight into this problem. In these models, dust and the radiation pressure acting on it provide the controlling factor in moderating the density, excitation and surface brightness of photoionized NLR structures. Additionally, photoelectric heating by the dust is important in determining the temperature structure of the models. These models can also explain the coexistence of the low-, intermediate- and coronal ionization zones within a single self-consistent physical structure. The radiation pressure acting on dust may also be capable of driving the fast (~3000 km/s) outflows such as are seen in the HST observations of NGC 1068.Comment: 23 pages, 8 figures, Accepted by Ap

    The MAPPINGS III Library of Fast Radiative Shock Models

    Full text link
    We present a new library of fully-radiative shock models calculated with the MAPPINGS III shock and photoionization code. The library consists of grids of models with shock velocities in the range v=100-1000 km/s and magnetic parameters B/sqrt(n) of 10^-4 - 10 muG cm^(3/2) for five different atomic abundance sets, and for a pre-shock density of 1.0 cm^(-3). Additionally, Solar abundance model grids have been calculated for densities of 0.01, 0.1, 10, 100, and 1000 cm^(-3) with the same range in v and B/sqrt(n). Each model includes components of both the radiative shock and its photoionized precursor, ionized by the EUV and soft X-ray radiation generated in the radiative gas. We present the details of the ionization structure, the column densities, and the luminosities of the shock and its precursor. Emission line ratio predictions are separately given for the shock and its precursor as well as for the composite shock+precursor structure to facilitate comparison with observations in cases where the shock and its precursor are not resolved. Emission line ratio grids for shock and shock+precursor are presented on standard line ratio diagnostic diagrams, and we compare these grids to observations of radio galaxies and a sample of AGN and star forming galaxies from the Sloan Digital Sky Survey. This library is available online, along with a suite of tools to enable the analysis of the shocks and the easy creation of emission line ratio diagnostic diagrams. These models represent a significant increase in parameter space coverage over previously available models, and therefore provide a unique tool in the diagnosis of emission by shocks.Comment: 39 pages, 34 figures, accepted for publication in ApJS, April 200

    Sequential pivotal mechanisms for public project problems

    Get PDF
    It is well-known that for several natural decision problems no budget balanced Groves mechanisms exist. This has motivated recent research on designing variants of feasible Groves mechanisms (termed as `redistribution of VCG (Vickrey-Clarke-Groves) payments') that generate reduced deficit. With this in mind, we study sequential mechanisms and consider optimal strategies that could reduce the deficit resulting under the simultaneous mechanism. We show that such strategies exist for the sequential pivotal mechanism of the well-known public project problem. We also exhibit an optimal strategy with the property that a maximal social welfare is generated when each player follows it. Finally, we show that these strategies can be achieved by an implementation in Nash equilibrium.Comment: 19 pages. The version without the appendix will appear in the Proc. 2nd International Symposium on Algorithmic Game Theory, 200

    Anatomy-driven modelling of spatial correlation for regularisation of arterial spin labelling images

    Get PDF
    Arterial spin labelling (ASL) allows blood flow to be measured in the brain and other organs of the body, which is valuable for both research and clinical use. Unfortunately, ASL suffers from an inherently low signal to noise ratio, necessitating methodological advances in ASL acquisition and processing. Spatial regularisation improves the effective signal to noise ratio, and is a common step in ASL processing. However, the standard spatial regularisation technique requires a manually-specified smoothing kernel of an arbitrary size, and can lead to loss of fine detail. Here, we present a Bayesian model of spatial correlation, which uses anatomical information from structural images to perform principled spatial regularisation, modelling the underlying signal and removing the need to set arbitrary smoothing parameters. Using data from a large cohort (N = 130) of preterm-born adolescents and age-matched controls, we show our method yields significant improvements in test-retest reproducibility, increasing the correlation coefficient by 14% relative to Gaussian smoothing and giving a corresponding improvement in statistical power. This novel technique has the potential to significantly improve single inversion time ASL studies, allowing more reliable detection of perfusion differences with a smaller number of subjects

    Internal Dust Correction Factors for Star Formation Rates Derived for Dusty \HII Regions and Starburst Galaxies

    Get PDF
    Star formation rates in galaxies are frequently estimated using the Balmer line fluxes. However, these can be systematically underestimated because dust competes for the absorption of Lyman continuum photons in the ionized gas. Here we present theoretical correction factors in a simple analytic form. T These factors scale as the product of the ionization parameter, U{\cal U}, and the nebular O/H abundance ratio, both of which can now be derived from the observation of bright nebular line ratios. The correction factors are only somewhat dependent upon the photoelectron production by grains, but are very sensitive to the presence of complex PAH-like carbonaceous molecules in the ionized gas, providing that these can survive in such an environment.Comment: 13 pages, 1 figures, Accepted for publication in ApJ. (Feb 1, 2003
    • 

    corecore